• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. May 17, 1999; 18(10): 2707–2721.
PMCID: PMC1171353

Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage.

Abstract

In yeast, anaphase entry depends on Pds1 proteolysis, while chromosome re-duplication in the subsequent S-phase involves degradation of mitotic cyclins such as Clb2. Sequential proteolysis of Pds1 and mitotic cyclins is mediated by the anaphase-promoting complex (APC). Lagging chromosomes or spindle damage are detected by surveillance mechanisms (checkpoints) which block anaphase onset, cytokinesis and DNA re-replication. Until now, the MAD and BUB genes implicated in this regulation were thought to function in a single pathway that blocks APC activity. We show that spindle damage blocks sister chromatid separation solely by inhibiting APCCdc20-dependent Pds1 proteolysis and that this process requires Mad2. Blocking APCCdh1-mediated Clb2 proteolysis and chromosome re-duplication does not require Mad2 but a different protein, Bub2. Our data imply that Mad1, Mad2, Mad3 and Bub1 regulate APCCdc20, whereas Bub2 regulates APCCdh1.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Chen RH, Waters JC, Salmon ED, Murray AW. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science. 1996 Oct 11;274(5285):242–246. [PubMed]
  • Chen RH, Shevchenko A, Mann M, Murray AW. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol. 1998 Oct 19;143(2):283–295. [PMC free article] [PubMed]
  • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 1998 Jun 12;93(6):1067–1076. [PubMed]
  • Cohen-Fix O, Koshland D. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14361–14366. [PMC free article] [PubMed]
  • Cohen-Fix O, Peters JM, Kirschner MW, Koshland D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 1996 Dec 15;10(24):3081–3093. [PubMed]
  • Dahmann C, Diffley JF, Nasmyth KA. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol. 1995 Nov 1;5(11):1257–1269. [PubMed]
  • Epstein CB, Cross FR. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 1992 Sep;6(9):1695–1706. [PubMed]
  • Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 1998 Jun 15;12(12):1871–1883. [PMC free article] [PubMed]
  • Fankhauser C, Marks J, Reymond A, Simanis V. The S. pombe cdc16 gene is required both for maintenance of p34cdc2 kinase activity and regulation of septum formation: a link between mitosis and cytokinesis? EMBO J. 1993 Jul;12(7):2697–2704. [PMC free article] [PubMed]
  • Fitzpatrick PJ, Toyn JH, Millar JB, Johnston LH. DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dual-specificity protein phosphatase. Mol Gen Genet. 1998 May;258(4):437–441. [PubMed]
  • Furge KA, Wong K, Armstrong J, Balasubramanian M, Albright CF. Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast. Curr Biol. 1998 Aug 27;8(17):947–954. [PubMed]
  • Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997 Oct 3;91(1):47–57. [PMC free article] [PubMed]
  • Hardwick KG, Murray AW. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol. 1995 Nov;131(3):709–720. [PMC free article] [PubMed]
  • Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science. 1996 Aug 16;273(5277):953–956. [PubMed]
  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. [PubMed]
  • Hayden JH, Bowser SS, Rieder CL. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol. 1990 Sep;111(3):1039–1045. [PMC free article] [PubMed]
  • Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991 Aug 9;66(3):507–517. [PubMed]
  • Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A, Murray AW. Budding yeast Cdc20: a target of the spindle checkpoint. Science. 1998 Feb 13;279(5353):1041–1044. [PubMed]
  • Irniger S, Piatti S, Michaelis C, Nasmyth K. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell. 1995 Apr 21;81(2):269–278. [PubMed]
  • Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR. Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1988 Oct;107(4):1409–1426. [PMC free article] [PubMed]
  • Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell. 1998 Oct;9(10):2803–2817. [PMC free article] [PubMed]
  • Jaspersen SL, Charles JF, Morgan DO. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol. 1999 Mar 11;9(5):227–236. [PubMed]
  • Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell. 1998 Apr 3;93(1):81–91. [PubMed]
  • Jwa M, Song K. Byr4, a dosage-dependent regulator of cytokinesis in S. pombe, interacts with a possible small GTPase pathway including Spg1 and Cdc16. Mol Cells. 1998 Apr 30;8(2):240–245. [PubMed]
  • King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell. 1995 Apr 21;81(2):279–288. [PubMed]
  • Knapp D, Bhoite L, Stillman DJ, Nasmyth K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol. 1996 Oct;16(10):5701–5707. [PMC free article] [PubMed]
  • Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell. 1991 Aug 9;66(3):519–531. [PubMed]
  • Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science. 1996 Oct 11;274(5285):246–248. [PubMed]
  • Lim HH, Goh PY, Surana U. Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr Biol. 1998 Feb 12;8(4):231–234. [PubMed]
  • Losada A, Hirano M, Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 1998 Jul 1;12(13):1986–1997. [PMC free article] [PubMed]
  • Merdes A, De Mey J. The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition. Eur J Cell Biol. 1990 Dec;53(2):313–325. [PubMed]
  • Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997 Oct 3;91(1):35–45. [PubMed]
  • Minshull J, Straight A, Rudner AD, Dernburg AF, Belmont A, Murray AW. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr Biol. 1996 Dec 1;6(12):1609–1620. [PubMed]
  • Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell. 1991 Aug 23;66(4):743–758. [PubMed]
  • Nasmyth K. At the heart of the budding yeast cell cycle. Trends Genet. 1996 Oct;12(10):405–412. [PubMed]
  • Nasmyth K, Adolf G, Lydall D, Seddon A. The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SW15 nuclear entry. Cell. 1990 Aug 24;62(4):631–647. [PubMed]
  • Neuwald AF. A shared domain between a spindle assembly checkpoint protein and Ypt/Rab-specific GTPase-activators. Trends Biochem Sci. 1997 Jul;22(7):243–244. [PubMed]
  • Pangilinan F, Li Q, Weaver T, Lewis BC, Dang CV, Spencer F. Mammalian BUB1 protein kinases: map positions and in vivo expression. Genomics. 1997 Dec 15;46(3):379–388. [PubMed]
  • Schmidt S, Sohrmann M, Hofmann K, Woollard A, Simanis V. The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev. 1997 Jun 15;11(12):1519–1534. [PubMed]
  • Schott EJ, Hoyt MA. Dominant alleles of Saccharomyces cerevisiae CDC20 reveal its role in promoting anaphase. Genetics. 1998 Feb;148(2):599–610. [PMC free article] [PubMed]
  • Schwab M, Lutum AS, Seufert W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell. 1997 Aug 22;90(4):683–693. [PubMed]
  • Schwob E, Nasmyth K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 1993 Jul;7(7A):1160–1175. [PubMed]
  • Shirayama M, Matsui Y, Toh-E A. The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol Cell Biol. 1994 Nov;14(11):7476–7482. [PMC free article] [PubMed]
  • Shirayama M, Zachariae W, Ciosk R, Nasmyth K. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 1998 Mar 2;17(5):1336–1349. [PMC free article] [PubMed]
  • Song K, Mach KE, Chen CY, Reynolds T, Albright CF. A novel suppressor of ras1 in fission yeast, byr4, is a dosage-dependent inhibitor of cytokinesis. J Cell Biol. 1996 Jun;133(6):1307–1319. [PMC free article] [PubMed]
  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell. 1995 Feb;6(2):185–197. [PMC free article] [PubMed]
  • Surana U, Amon A, Dowzer C, McGrew J, Byers B, Nasmyth K. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 1993 May;12(5):1969–1978. [PMC free article] [PubMed]
  • Tanaka T, Nasmyth K. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 1998 Sep 1;17(17):5182–5191. [PMC free article] [PubMed]
  • Taylor SS, McKeon F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell. 1997 May 30;89(5):727–735. [PubMed]
  • Taylor SS, Ha E, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol. 1998 Jul 13;142(1):1–11. [PMC free article] [PubMed]
  • Uhlmann F, Nasmyth K. Cohesion between sister chromatids must be established during DNA replication. Curr Biol. 1998 Oct 8;8(20):1095–1101. [PubMed]
  • Verma R, Feldman RM, Deshaies RJ. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell. 1997 Aug;8(8):1427–1437. [PMC free article] [PubMed]
  • Visintin R, Prinz S, Amon A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science. 1997 Oct 17;278(5337):460–463. [PubMed]
  • Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 1998 Dec;2(6):709–718. [PubMed]
  • Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast. 1997 Sep 15;13(11):1065–1075. [PubMed]
  • Wan J, Xu H, Grunstein M. CDC14 of Saccharomyces cerevisiae. Cloning, sequence analysis, and transcription during the cell cycle. J Biol Chem. 1992 Jun 5;267(16):11274–11280. [PubMed]
  • Wang Y, Burke DJ. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1995 Dec;15(12):6838–6844. [PMC free article] [PubMed]
  • Weiss E, Winey M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol. 1996 Jan;132(1-2):111–123. [PMC free article] [PubMed]
  • Yamamoto A, Guacci V, Koshland D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol. 1996 Apr;133(1):99–110. [PMC free article] [PubMed]
  • Zachariae W, Shin TH, Galova M, Obermaier B, Nasmyth K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science. 1996 Nov 15;274(5290):1201–1204. [PubMed]
  • Zachariae W, Schwab M, Nasmyth K, Seufert W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science. 1998 Nov 27;282(5394):1721–1724. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...