• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Mar 1, 1999; 18(5): 1199–1213.
PMCID: PMC1171211

A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association.

Abstract

Invasin allows efficient entry into mammalian cells by Yersinia pseudotuberculosis. It has been shown that the C-terminal 192 amino acids of invasin are essential for binding of beta1 integrin receptors and subsequent uptake. By analyzing the internalization of latex beads coated with invasin derivatives, an additional domain of invasin was shown to be required for efficient bacterial internalization. A monomeric derivative encompassing the C-terminal 197 amino acids was inefficient at promoting entry of latex beads, whereas dimerization of this derivative by antibody significantly increased uptake. By using the DNA-binding domain of lambda repressor as a reporter for invasin self-interaction, we have demonstrated that a region of the invasin protein located N-terminal to the cell adhesion domain of invasin is able to self-associate. Chemical cross-linking studies of purified and surface-exposed invasin proteins, and the dominant-interfering effect of a non-functional invasin derivative are consistent with the presence of a self-association domain that is located within the region of invasin that enhances bacterial uptake. We conclude that interaction of homomultimeric invasin with multiple integrins establishes tight adherence and receptor clustering, thus providing a signal for internalization.

Full Text

The Full Text of this article is available as a PDF (775K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • Bölin I, Norlander L, Wolf-Watz H. Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect Immun. 1982 Aug;37(2):506–512. [PMC free article] [PubMed]
  • Braun L, Ohayon H, Cossart P. The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol. 1998 Mar;27(5):1077–1087. [PubMed]
  • Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. [PubMed]
  • Devenish JA, Schiemann DA. HeLa cell infection by Yersinia enterocolitica: evidence for lack of intracellular multiplication and development of a new procedure for quantitative expression of infectivity. Infect Immun. 1981 Apr;32(1):48–55. [PMC free article] [PubMed]
  • Finlay BB, Cossart P. Exploitation of mammalian host cell functions by bacterial pathogens. Science. 1997 May 2;276(5313):718–725. [PubMed]
  • Frankel G, Candy DC, Everest P, Dougan G. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. Infect Immun. 1994 May;62(5):1835–1842. [PMC free article] [PubMed]
  • Grützkau A, Hanski C, Hahn H, Riecken EO. Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut. 1990 Sep;31(9):1011–1015. [PMC free article] [PubMed]
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. [PubMed]
  • Isberg RR. Mammalian cell adhesion functions and cellular penetration of enteropathogenic Yersinia species. Mol Microbiol. 1989 Oct;3(10):1449–1453. [PubMed]
  • Isberg RR. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science. 1991 May 17;252(5008):934–938. [PubMed]
  • Isberg RR, Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature. 1985 Sep 19;317(6034):262–264. [PubMed]
  • Isberg RR, Leong JM. Cultured mammalian cells attach to the invasin protein of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6682–6686. [PMC free article] [PubMed]
  • Isberg RR, Leong JM. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990 Mar 9;60(5):861–871. [PubMed]
  • Isberg RR, Voorhis DL, Falkow S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell. 1987 Aug 28;50(5):769–778. [PubMed]
  • Jerse AE, Yu J, Tall BD, Kaper JB. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7839–7843. [PMC free article] [PubMed]
  • Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8392–8396. [PMC free article] [PubMed]
  • Leong JM, Morrissey PE, Isberg RR. A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. J Biol Chem. 1993 Sep 25;268(27):20524–20532. [PubMed]
  • Leong JM, Fournier RS, Isberg RR. Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein. EMBO J. 1990 Jun;9(6):1979–1989. [PMC free article] [PubMed]
  • Leong JM, Fournier RS, Isberg RR. Mapping and topographic localization of epitopes of the Yersinia pseudotuberculosis invasin protein. Infect Immun. 1991 Oct;59(10):3424–3433. [PMC free article] [PubMed]
  • Leong JM, Morrissey PE, Isberg RR. A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. J Biol Chem. 1993 Sep 25;268(27):20524–20532. [PubMed]
  • Leong JM, Morrissey PE, Marra A, Isberg RR. An aspartate residue of the Yersinia pseudotuberculosis invasin protein that is critical for integrin binding. EMBO J. 1995 Feb 1;14(3):422–431. [PMC free article] [PubMed]
  • Marra A, Isberg RR. Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer's patch intestinal epithelium. Infect Immun. 1997 Aug;65(8):3412–3421. [PMC free article] [PubMed]
  • Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med. 1995 Nov 1;182(5):1231–1241. [PMC free article] [PubMed]
  • Miller VL, Falkow S. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun. 1988 May;56(5):1242–1248. [PMC free article] [PubMed]
  • Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995 Feb 10;267(5199):883–885. [PubMed]
  • Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995 Nov;131(3):791–805. [PMC free article] [PubMed]
  • Obara M, Kang MS, Yamada KM. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell. 1988 May 20;53(4):649–657. [PubMed]
  • Pepe JC, Miller VL. The Yersinia enterocolitica inv gene product is an outer membrane protein that shares epitopes with Yersinia pseudotuberculosis invasin. J Bacteriol. 1990 Jul;172(7):3780–3789. [PMC free article] [PubMed]
  • Pepe JC, Wachtel MR, Wagar E, Miller VL. Pathogenesis of defined invasion mutants of Yersinia enterocolitica in a BALB/c mouse model of infection. Infect Immun. 1995 Dec;63(12):4837–4848. [PMC free article] [PubMed]
  • Rankin S, Isberg RR, Leong JM. The integrin-binding domain of invasin is sufficient to allow bacterial entry into mammalian cells. Infect Immun. 1992 Sep;60(9):3909–3912. [PMC free article] [PubMed]
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. [PubMed]
  • Saltman LH, Lu Y, Zaharias EM, Isberg RR. A region of the Yersinia pseudotuberculosis invasin protein that contributes to high affinity binding to integrin receptors. J Biol Chem. 1996 Sep 20;271(38):23438–23444. [PubMed]
  • Schauer DB, Falkow S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect Immun. 1993 Nov;61(11):4654–4661. [PMC free article] [PubMed]
  • Simonet M, Riot B, Fortineau N, Berche P. Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene. Infect Immun. 1996 Jan;64(1):375–379. [PMC free article] [PubMed]
  • Swanson JA, Baer SC. Phagocytosis by zippers and triggers. Trends Cell Biol. 1995 Mar;5(3):89–93. [PubMed]
  • Tran Van Nhieu G, Isberg RR. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J. 1993 May;12(5):1887–1895. [PMC free article] [PubMed]
  • Van Nhieu GT, Krukonis ES, Reszka AA, Horwitz AF, Isberg RR. Mutations in the cytoplasmic domain of the integrin beta1 chain indicate a role for endocytosis factors in bacterial internalization. J Biol Chem. 1996 Mar 29;271(13):7665–7672. [PubMed]
  • Van de Water L, Destree AT, Hynes RO. Fibronectin binds to some bacteria but does not promote their uptake by phagocytic cells. Science. 1983 Apr 8;220(4593):201–204. [PubMed]
  • Yang Y, Isberg RR. Cellular internalization in the absence of invasin expression is promoted by the Yersinia pseudotuberculosis yadA product. Infect Immun. 1993 Sep;61(9):3907–3913. [PMC free article] [PubMed]
  • Young VB, Miller VL, Falkow S, Schoolnik GK. Sequence, localization and function of the invasin protein of Yersinia enterocolitica. Mol Microbiol. 1990 Jul;4(7):1119–1128. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...