• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Jan 15, 1999; 18(2): 457–469.
PMCID: PMC1171139

Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs.


During site-specific pseudouridylation of eukaryotic rRNAs, selection of correct substrate uridines for isomerization into pseudouridine is directed by small nucleolar RNAs (snoRNAs). The pseudouridylation guide snoRNAs share a common 'hairpin-hinge- hairpin-tail' secondary structure and two conserved sequence motifs, the H and ACA boxes, located in the single-stranded hinge and tail regions, respectively. In the 5'- and/or 3'-terminal hairpin, an internal loop structure, the pseudouridylation pocket, selects the target uridine through formation of base-pairing interactions with rRNAs. Here, essential elements for accumulation and function of rRNA pseudouridylation guide snoRNAs have been analysed by expressing various mutant yeast snR5, snR36 and human U65 snoRNAs in yeast cells. We demonstrate that the H and ACA boxes that are required for formation of the correct 5' and 3' ends of the snoRNA, respectively, are also essential for the pseudouridylation reaction directed by both the 5'- and 3'-terminal pseudouridylation pockets. Similarly, RNA helices flanking the two pseudouridylation pockets are equally essential for pseudouridylation reactions mediated by either the 5' or 3' hairpin structure, indicating that the two hairpin domains function in a highly co-operative manner. Finally, we demonstrate that by manipulating the rRNA recognition motifs of pseudouridylation guide snoRNAs, novel pseudouridylation sites can be generated in yeast rRNAs.

Full Text

The Full Text of this article is available as a PDF (614K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bagni C, Lapeyre B. Gar1p binds to the small nucleolar RNAs snR10 and snR30 in vitro through a nontypical RNA binding element. J Biol Chem. 1998 May 1;273(18):10868–10873. [PubMed]
  • Bachellerie JP, Cavaillé J. Guiding ribose methylation of rRNA. Trends Biochem Sci. 1997 Jul;22(7):257–261. [PubMed]
  • Bakin A, Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. [PubMed]
  • Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996 Sep 6;86(5):823–834. [PubMed]
  • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast. 1991 Aug-Sep;7(6):609–615. [PubMed]
  • Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996 Mar 1;15(5):1121–1131. [PMC free article] [PubMed]
  • Cavaillé J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie. 1996;78(6):443–456. [PubMed]
  • Cavaillé J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996 Oct 24;383(6602):732–735. [PubMed]
  • Cecconi F, Mariottini P, Amaldi F. The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 1995 Nov 25;23(22):4670–4676. [PMC free article] [PubMed]
  • Chanfreau G, Rotondo G, Legrain P, Jacquier A. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J. 1998 Jul 1;17(13):3726–3737. [PMC free article] [PubMed]
  • Datta AK. Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction. Nucleic Acids Res. 1995 Nov 11;23(21):4530–4531. [PMC free article] [PubMed]
  • Eichler DC, Craig N. Processing of eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1994;49:197–239. [PubMed]
  • Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997 May 30;89(5):799–809. [PubMed]
  • Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997 Apr 1;11(7):941–956. [PubMed]
  • Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. [PubMed]
  • Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gélugne JP, Caizergues-Ferrer M. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 1998 Dec 1;17(23):7078–7090. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Kiss T, Filipowicz W. Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 1995 Jun 1;9(11):1411–1424. [PubMed]
  • Kiss T, Bortolin ML, Filipowicz W. Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin. Mol Cell Biol. 1996 Apr;16(4):1391–1400. [PMC free article] [PubMed]
  • Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996 Jun 28;85(7):1077–1088. [PubMed]
  • Kiss-László Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 1998 Feb 2;17(3):797–807. [PMC free article] [PubMed]
  • Koonin EV. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 1996 Jun 15;24(12):2411–2415. [PMC free article] [PubMed]
  • Koonin EV, Bork P, Sander C. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme? Nucleic Acids Res. 1994 Jun 11;22(11):2166–2167. [PMC free article] [PubMed]
  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998 Feb 15;12(4):527–537. [PMC free article] [PubMed]
  • Lane BG, Ofengand J, Gray MW. Pseudouridine and O2'-methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie. 1995;77(1-2):7–15. [PubMed]
  • Maden BE. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303. [PubMed]
  • Maden T. Ribosomal RNA. Click here for methylation. Nature. 1996 Oct 24;383(6602):675–676. [PubMed]
  • Maden BE. Eukaryotic ribosomal RNA. Guides to 95 new angles. Nature. 1997 Sep 11;389(6647):129–131. [PubMed]
  • Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897–934. [PubMed]
  • Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell. 1997 May 16;89(4):565–573. [PubMed]
  • Nitta I, Kamada Y, Noda H, Ueda T, Watanabe K. Reconstitution of peptide bond formation with Escherichia coli 23S ribosomal RNA domains. Science. 1998 Jul 31;281(5377):666–669. [PubMed]
  • Ofengand J, Bakin A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol. 1997 Feb 21;266(2):246–268. [PubMed]
  • Ofengand J, Bakin A, Wrzesinski J, Nurse K, Lane BG. The pseudouridine residues of ribosomal RNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):915–924. [PubMed]
  • Ooi SL, Samarsky DA, Fournier MJ, Boeke JD. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA. 1998 Sep;4(9):1096–1110. [PMC free article] [PubMed]
  • Peculis B. RNA processing: pocket guides to ribosomal RNA. Curr Biol. 1997 Aug 1;7(8):R480–R482. [PubMed]
  • Peculis BA, Mount SM. Ribosomal RNA: small nucleolar RNAs make their mark. Curr Biol. 1996 Nov 1;6(11):1413–1415. [PubMed]
  • Petfalski E, Dandekar T, Henry Y, Tollervey D. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol. 1998 Mar;18(3):1181–1189. [PMC free article] [PubMed]
  • Schimmel P, Alexander R. Perspectives: protein synthesis. All you need is RNA. Science. 1998 Jul 31;281(5377):658–659. [PubMed]
  • Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. [PubMed]
  • Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997 May 30;89(5):669–672. [PubMed]
  • Tollervey D. Small nucleolar RNAs guide ribosomal RNA methylation. Science. 1996 Aug 23;273(5278):1056–1057. [PubMed]
  • Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997 Jun;9(3):337–342. [PubMed]
  • Tollervey D, Mattaj IW. Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U-snRNPs. EMBO J. 1987 Feb;6(2):469–476. [PMC free article] [PubMed]
  • Tycowski KT, Smith CM, Shu MD, Steitz JA. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14480–14485. [PMC free article] [PubMed]
  • Venema J, Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1629–1650. [PubMed]
  • Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA. 1996 Feb;2(2):118–133. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • Cited in Books
    Cited in Books
    PubMed Central articles cited in books
  • Compound
    PubChem Compound links
  • MedGen
    Related information in MedGen
  • PubMed
    PubMed citations for these articles
  • Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...