• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Nov 2, 1998; 17(21): 6168–6177.
PMCID: PMC1170943

A novel direct interaction of endoplasmic reticulum with microtubules.


The positioning and dynamics of organelles in eukaryotic cells critically depend on membrane-cytoskeleton interactions. Motor proteins play an important role in the directed movement of organelle membranes along microtubules, but the basic mechanism by which membranes stably interact with the microtubule cytoskeleton is largely unknown. Here we report that p63, an integral membrane protein of the reticular subdomain of the rough endoplasmic reticulum (ER), binds microtubules in vivo and in vitro. Overexpression of p63 in cell culture led to a striking rearrangement of the ER and to concomitant bundling of microtubules along the altered ER. Mutational analysis of the cytoplasmic domain of p63 revealed two determinants responsible for these changes: an ER rearrangement determinant near the N-terminus and a central microtubule-binding region. The two determinants function independently of one another as indicated by deletion experiments. A peptide corresponding to the cytoplasmic tail of p63 promoted microtubule polymerization in vitro. p63 is the first identified integral membrane protein that can link a membrane organelle directly to microtubules. By doing so, it may contribute to the positioning of the ER along microtubules.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Allan V. Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro. J Cell Biol. 1995 Mar;128(5):879–891. [PMC free article] [PubMed]
  • Allan V. Membrane traffic motors. FEBS Lett. 1995 Aug 1;369(1):101–106. [PubMed]
  • Buchman TG, Cabin DE, Vickers S, Deutschman CS, Delgado E, Sussman MM, Bulkley GB. Molecular biology of circulatory shock. Part II. Expression of four groups of hepatic genes is enhanced after resuscitation from cardiogenic shock. Surgery. 1990 Sep;108(3):559–566. [PubMed]
  • Burkhardt JK. In search of membrane receptors for microtubule-based motors - is kinectin a kinesin receptor? Trends Cell Biol. 1996 Apr;6(4):127–131. [PubMed]
  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol. 1997 Oct 20;139(2):469–484. [PMC free article] [PubMed]
  • Chapin SJ, Bulinski JC. Non-neuronal 210 x 10(3) Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau. J Cell Sci. 1991 Jan;98(Pt 1):27–36. [PubMed]
  • Cole NB, Lippincott-Schwartz J. Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol. 1995 Feb;7(1):55–64. [PubMed]
  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell. 1996 Apr;7(4):631–650. [PMC free article] [PubMed]
  • Cooper MS, Cornell-Bell AH, Chernjavsky A, Dani JW, Smith SJ. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cell. 1990 Apr 6;61(1):135–145. [PubMed]
  • Cullen BR. Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol. 1987;152:684–704. [PubMed]
  • Dabora SL, Sheetz MP. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. [PubMed]
  • Dahllöf B, Wallin M, Kvist S. The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus-2 is microtubule binding. J Biol Chem. 1991 Jan 25;266(3):1804–1808. [PubMed]
  • De Zeeuw CI, Hoogenraad CC, Goedknegt E, Hertzberg E, Neubauer A, Grosveld F, Galjart N. CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron. 1997 Dec;19(6):1187–1199. [PubMed]
  • Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol. 1996 Feb;132(4):617–633. [PMC free article] [PubMed]
  • Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. [PMC free article] [PubMed]
  • Gee MA, Heuser JE, Vallee RB. An extended microtubule-binding structure within the dynein motor domain. Nature. 1997 Dec 11;390(6660):636–639. [PubMed]
  • Goodson HV, Valetti C, Kreis TE. Motors and membrane traffic. Curr Opin Cell Biol. 1997 Feb;9(1):18–28. [PubMed]
  • Hauri HP, Sterchi EE, Bienz D, Fransen JA, Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. [PMC free article] [PubMed]
  • Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. [PubMed]
  • Holzbaur EL, Vallee RB. DYNEINS: molecular structure and cellular function. Annu Rev Cell Biol. 1994;10:339–372. [PubMed]
  • Itoh T, Miura K, Miki H, Takenawa T. Beta-tubulin binds Src homology 2 domains through a region different from the tyrosine-phosphorylated protein-recognizing site. J Biol Chem. 1996 Nov 1;271(44):27931–27935. [PubMed]
  • Jorgensen PL. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. [PubMed]
  • Kashgarian M, Biemesderfer D, Caplan M, Forbush B., 3rd Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int. 1985 Dec;28(6):899–913. [PubMed]
  • Koonce MP. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J Biol Chem. 1997 Aug 8;272(32):19714–19718. [PubMed]
  • Kreis TE. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 1987 Sep;6(9):2597–2606. [PMC free article] [PubMed]
  • Lee C, Chen LB. Dynamic behavior of endoplasmic reticulum in living cells. Cell. 1988 Jul 1;54(1):37–46. [PubMed]
  • Lee G, Cowan N, Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988 Jan 15;239(4837):285–288. [PubMed]
  • Lewis SA, Wang DH, Cowan NJ. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science. 1988 Nov 11;242(4880):936–939. [PubMed]
  • Linstedt AD, Hauri HP. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell. 1993 Jul;4(7):679–693. [PMC free article] [PubMed]
  • Ludin B, Ashbridge K, Fünfschilling U, Matus A. Functional analysis of the MAP2 repeat domain. J Cell Sci. 1996 Jan;109(Pt 1):91–99. [PubMed]
  • Mundy DI. Protein palmitoylation in membrane trafficking. Biochem Soc Trans. 1995 Aug;23(3):572–576. [PubMed]
  • Mundy DI, Warren G. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein. J Cell Biol. 1992 Jan;116(1):135–146. [PMC free article] [PubMed]
  • Nakaseko Y, Nabeshima K, Kinoshita K, Yanagida M. Dissection of fission yeast microtubule associating protein p93Dis1: regions implicated in regulated localization and microtubule interaction. Genes Cells. 1996 Jul;1(7):633–644. [PubMed]
  • Noble M, Lewis SA, Cowan NJ. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J Cell Biol. 1989 Dec;109(6 Pt 2):3367–3376. [PMC free article] [PubMed]
  • Pierre P, Scheel J, Rickard JE, Kreis TE. CLIP-170 links endocytic vesicles to microtubules. Cell. 1992 Sep 18;70(6):887–900. [PubMed]
  • Pierre P, Pepperkok R, Kreis TE. Molecular characterization of two functional domains of CLIP-170 in vivo. J Cell Sci. 1994 Jul;107(Pt 7):1909–1920. [PubMed]
  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature. 1997 Sep 4;389(6646):81–85. [PubMed]
  • Rickard JE, Kreis TE. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 1996 May;6(5):178–183. [PubMed]
  • Scheel J, Kreis TE. Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro. J Biol Chem. 1991 Sep 25;266(27):18141–18148. [PubMed]
  • Schnapp BJ. Retroactive motors. Neuron. 1997 Apr;18(4):523–526. [PubMed]
  • Schutze MP, Peterson PA, Jackson MR. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994 Apr 1;13(7):1696–1705. [PMC free article] [PubMed]
  • Schweizer A, Matter K, Ketcham CM, Hauri HP. The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi. J Cell Biol. 1991 Apr;113(1):45–54. [PMC free article] [PubMed]
  • Schweizer A, Ericsson M, Bächi T, Griffiths G, Hauri HP. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J Cell Sci. 1993 Mar;104(Pt 3):671–683. [PubMed]
  • Schweizer A, Rohrer J, Jenö P, DeMaio A, Buchman TG, Hauri HP. A reversibly palmitoylated resident protein (p63) of an ER-Golgi intermediate compartment is related to a circulatory shock resuscitation protein. J Cell Sci. 1993 Mar;104(Pt 3):685–694. [PubMed]
  • Schweizer A, Rohrer J, Hauri HP, Kornfeld S. Retention of p63 in an ER-Golgi intermediate compartment depends on the presence of all three of its domains and on its ability to form oligomers. J Cell Biol. 1994 Jul;126(1):25–39. [PMC free article] [PubMed]
  • Schweizer A, Rohrer J, Slot JW, Geuze HJ, Kornfeld S. Reassessment of the subcellular localization of p63. J Cell Sci. 1995 Jun;108(Pt 6):2477–2485. [PubMed]
  • Terasaki M, Chen LB, Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol. 1986 Oct;103(4):1557–1568. [PMC free article] [PubMed]
  • Thyberg J, Moskalewski S. Microtubules and the organization of the Golgi complex. Exp Cell Res. 1985 Jul;159(1):1–16. [PubMed]
  • Toyoshima I, Yu H, Steuer ER, Sheetz MP. Kinectin, a major kinesin-binding protein on ER. J Cell Biol. 1992 Sep;118(5):1121–1131. [PMC free article] [PubMed]
  • Vale RD, Hotani H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol. 1988 Dec;107(6 Pt 1):2233–2241. [PMC free article] [PubMed]
  • Vallee RB. Purification of brain microtubules and microtubule-associated protein 1 using taxol. Methods Enzymol. 1986;134:104–115. [PubMed]
  • Vallee RB, Sheetz MP. Targeting of motor proteins. Science. 1996 Mar 15;271(5255):1539–1544. [PubMed]
  • Walker RA, Sheetz MP. Cytoplasmic microtubule-associated motors. Annu Rev Biochem. 1993;62:429–451. [PubMed]
  • Wang PJ, Huffaker TC. Stu2p: A microtubule-binding protein that is an essential component of the yeast spindle pole body. J Cell Biol. 1997 Dec 1;139(5):1271–1280. [PMC free article] [PubMed]
  • Waterman-Storer CM, Gregory J, Parsons SF, Salmon ED. Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts. J Cell Biol. 1995 Sep;130(5):1161–1169. [PMC free article] [PubMed]
  • Weingarten MD, Suter MM, Littman DR, Kirschner MW. Properties of the depolymerization products of microtubules from mammalian brain. Biochemistry. 1974 Dec 31;13(27):5529–5537. [PubMed]
  • Woehlke G, Ruby AK, Hart CL, Ly B, Hom-Booher N, Vale RD. Microtubule interaction site of the kinesin motor. Cell. 1997 Jul 25;90(2):207–216. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...