• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Apr 1, 1998; 17(7): 2019–2032.
PMCID: PMC1170547

UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells.

Abstract

We have obtained a novel transcriptional cofactor, termed undifferentiated embryonic cell transcription factor 1 (UTF1), from F9 embryonic carcinoma (EC) cells. This protein is expressed in EC and embryonic stem cells, as well as in germ line tissues, but could not be detected in any of the other adult mouse tissues tested. Furthermore, when EC cells are induced to differentiate, UTF1 expression is rapidly extinguished. In normal mouse embryos, UTF1 mRNA is present in the inner cell mass, the primitive ectoderm and the extra-embryonic tissues. During the primitive streak stage, the induction of mesodermal cells is accompanied by the down-regulation of UTF1 in the primitive ectoderm. However, its expression is maintained for up to 13.5 days post-coitum in the extra-embryonic tissue. Functionally, UTF1 boosts the level of transcription of the adenovirus E2A promoter. However, unlike the pluripotent cell-specific E1A-like activity, which requires the E2F sites of the E2A promoter for increased transcriptional activation, UTF1-mediated activation is dependent on the upstream ATF site of this promoter. This result indicates that UTF1 is not a major component of the E1A-like activity present in pluripotent embryonic cells. Further analyses revealed that UTF1 interacts not only with the activation domain of ATF-2, but also with the TFIID complex in vivo. Thus, UTF1 displays many of the hallmark characteristics expected for a tissue-specific transcriptional coactivator that works in early embryogenesis.

Full Text

The Full Text of this article is available as a PDF (653K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. Recruitment of p300/CBP in p53-dependent signal pathways. Cell. 1997 Jun 27;89(7):1175–1184. [PubMed]
  • Bandara LR, La Thangue NB. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature. 1991 Jun 6;351(6326):494–497. [PubMed]
  • Berkenstam A, Ruiz MM, Barettino D, Horikoshi M, Stunnenberg HG. Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to E1A. Cell. 1992 May 1;69(3):401–412. [PubMed]
  • Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature. 1996 Sep 26;383(6598):344–347. [PubMed]
  • Brill SJ, Sternglanz R. Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell. 1988 Jul 29;54(3):403–411. [PubMed]
  • Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996 Sep 5;383(6595):99–103. [PubMed]
  • Chen W, Struhl K. Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2691–2695. [PMC free article] [PubMed]
  • Cheng X, Reginato MJ, Andrews NC, Lazar MA. The transcriptional integrator CREB-binding protein mediates positive cross talk between nuclear hormone receptors and the hematopoietic bZip protein p45/NF-E2. Mol Cell Biol. 1997 Mar;17(3):1407–1416. [PMC free article] [PubMed]
  • Cohen C, Parry DA. Alpha-helical coiled coils: more facts and better predictions. Science. 1994 Jan 28;263(5146):488–489. [PubMed]
  • Colberg-Poley AM, Voss SD, Chowdhury K, Gruss P. Structural analysis of murine genes containing homoeo box sequences and their expression in embryonal carcinoma cells. Nature. 314(6013):713–718. [PubMed]
  • Collart MA, Struhl K. NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 1994 Mar 1;8(5):525–537. [PubMed]
  • Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C, Takahashi T, Ishii S. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 1996 Mar 1;10(5):528–540. [PubMed]
  • van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 1995 Apr 18;14(8):1798–1811. [PMC free article] [PubMed]
  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. [PubMed]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed]
  • Dikstein R, Zhou S, Tjian R. Human TAFII 105 is a cell type-specific TFIID subunit related to hTAFII130. Cell. 1996 Oct 4;87(1):137–146. [PubMed]
  • Gorman CM, Rigby PW, Lane DP. Negative regulation of viral enhancers in undifferentiated embryonic stem cells. Cell. 1985 Sep;42(2):519–526. [PubMed]
  • Gstaiger M, Knoepfel L, Georgiev O, Schaffner W, Hovens CM. A B-cell coactivator of octamer-binding transcription factors. Nature. 1995 Jan 26;373(6512):360–362. [PubMed]
  • Gu W, Shi XL, Roeder RG. Synergistic activation of transcription by CBP and p53. Nature. 1997 Jun 19;387(6635):819–823. [PubMed]
  • Hansen SK, Takada S, Jacobson RH, Lis JT, Tjian R. Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell. 1997 Oct 3;91(1):71–83. [PubMed]
  • Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell. 1992 Jul 24;70(2):337–350. [PubMed]
  • Helin K, Wu CL, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C, Harlow E. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993 Oct;7(10):1850–1861. [PubMed]
  • Hen R, Borrelli E, Fromental C, Sassone-Corsi P, Chambon P. A mutated polyoma virus enhancer which is active in undifferentiated embryonal carcinoma cells is not repressed by adenovirus-2 E1A products. Nature. 1986 May 15;321(6067):249–251. [PubMed]
  • Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990 Feb 15;343(6259):617–622. [PubMed]
  • Hoey T, Warrior R, Manak J, Levine M. DNA-binding activities of the Drosophila melanogaster even-skipped protein are mediated by its homeo domain and influenced by protein context. Mol Cell Biol. 1988 Nov;8(11):4598–4607. [PMC free article] [PubMed]
  • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. [PubMed]
  • Hosler BA, LaRosa GJ, Grippo JF, Gudas LJ. Expression of REX-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Mol Cell Biol. 1989 Dec;9(12):5623–5629. [PMC free article] [PubMed]
  • Imperiale MJ, Kao HT, Feldman LT, Nevins JR, Strickland S. Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Mol Cell Biol. 1984 May;4(5):867–874. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell. 1996 May 3;85(3):403–414. [PubMed]
  • Keaveney M, Berkenstam A, Feigenbutz M, Vriend G, Stunnenberg HG. Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature. 1993 Oct 7;365(6446):562–566. [PubMed]
  • Kelly F, Condamine H. Tumor viruses and early mouse embryos. Biochim Biophys Acta. 1982 Apr 29;651(2-3):105–141. [PubMed]
  • La Thangue NB, Rigby PW. An adenovirus E1A-like transcription factor is regulated during the differentiation of murine embryonal carcinoma stem cells. Cell. 1987 May 22;49(4):507–513. [PubMed]
  • Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC, Green MR. A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8355–8359. [PMC free article] [PubMed]
  • Lee WS, Kao CC, Bryant GO, Liu X, Berk AJ. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell. 1991 Oct 18;67(2):365–376. [PubMed]
  • Li XY, Green MR. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev. 1996 Mar 1;10(5):517–527. [PubMed]
  • Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP coactivators. Nature. 1997 Jun 19;387(6635):823–827. [PubMed]
  • Liu F, Green MR. Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains. Nature. 1994 Apr 7;368(6471):520–525. [PubMed]
  • Livingstone C, Patel G, Jones N. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 1995 Apr 18;14(8):1785–1797. [PMC free article] [PubMed]
  • Luckow B, Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. [PMC free article] [PubMed]
  • Luo Y, Roeder RG. Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Mol Cell Biol. 1995 Aug;15(8):4115–4124. [PMC free article] [PubMed]
  • Maehara Y, Fujiyoshi T, Takahashi K, Yamamoto M, Endo H. 1.5 kb mRNA abundantly expressed in rat tumors encodes a 37 kilodalton protein in vitro. Biochem Biophys Res Commun. 1985 Sep 16;131(2):800–805. [PubMed]
  • Maekawa T, Matsuda S, Fujisawa J, Yoshida M, Ishii S. Cyclic AMP response element-binding protein, CRE-BP1, mediates the E1A-induced but not the Tax-induced trans-activation. Oncogene. 1991 Apr;6(4):627–632. [PubMed]
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634–7638. [PMC free article] [PubMed]
  • Miyajima A, Miyajima I, Arai K, Arai N. Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Mar;4(3):407–414. [PMC free article] [PubMed]
  • Murphy SP, Garbern J, Odenwald WF, Lazzarini RA, Linney E. Differential expression of the homeobox gene Hox-1.3 in F9 embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5587–5591. [PMC free article] [PubMed]
  • Murray EJ, Stott D, Rigby PW. Sequences and factors required for the F9 embryonal carcinoma stem cell E1a-like activity. Mol Cell Biol. 1991 Nov;11(11):5534–5540. [PMC free article] [PubMed]
  • Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 1990 Feb 9;60(3):461–472. [PubMed]
  • Okayama H, Kawaichi M, Brownstein M, Lee F, Yokota T, Arai K. High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 1987;154:3–28. [PubMed]
  • Okuda A, Imagawa M, Maeda Y, Sakai M, Muramatsu M. Structural and functional analysis of an enhancer GPEI having a phorbol 12-O-tetradecanoate 13-acetate responsive element-like sequence found in the rat glutathione transferase P gene. J Biol Chem. 1989 Oct 5;264(28):16919–16926. [PubMed]
  • Okuda A, Imagawa M, Sakai M, Muramatsu M. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J. 1990 Apr;9(4):1131–1135. [PMC free article] [PubMed]
  • Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990 Jun 21;345(6277):686–692. [PubMed]
  • Schöler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990 Mar 29;344(6265):435–439. [PubMed]
  • Schöler HR, Ciesiolka T, Gruss P. A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. Cell. 1991 Jul 26;66(2):291–304. [PubMed]
  • Shew JY, Lin BT, Chen PL, Tseng BY, Yang-Feng TL, Lee WH. C-terminal truncation of the retinoblastoma gene product leads to functional inactivation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):6–10. [PMC free article] [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PMC free article] [PubMed]
  • Strubin M, Newell JW, Matthias P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell. 1995 Feb 10;80(3):497–506. [PubMed]
  • Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol. 1990 Aug;10(8):4303–4313. [PMC free article] [PubMed]
  • Verrijzer CP, Tjian R. TAFs mediate transcriptional activation and promoter selectivity. Trends Biochem Sci. 1996 Sep;21(9):338–342. [PubMed]
  • Wagner S, Green MR. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science. 1993 Oct 15;262(5132):395–399. [PubMed]
  • Xin JH, Cowie A, Lachance P, Hassell JA. Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells. Genes Dev. 1992 Mar;6(3):481–496. [PubMed]
  • Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 1990 Sep 21;62(6):1205–1215. [PubMed]
  • Yao Y, Yamamoto K, Nishi Y, Nogi Y, Muramatsu M. Mouse RNA polymerase I 16-kDa subunit able to associate with 40-kDa subunit is a homolog of yeast AC19 subunit of RNA polymerases I and III. J Biol Chem. 1996 Dec 20;271(51):32881–32885. [PubMed]
  • Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995 Nov 1;9(21):2635–2645. [PubMed]
  • Zhou Q, Boyer TG, Berk AJ. Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev. 1993 Feb;7(2):180–187. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Gene
    Gene
    Gene links
  • Gene (nucleotide)
    Gene (nucleotide)
    Records in Gene identified from shared sequence links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Nucleotide
    Nucleotide
    Published Nucleotide sequences
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...