• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Apr 1, 1998; 17(7): 1996–2007.
PMCID: PMC1170545

GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway.

Abstract

The yeast RAS1 and RAS2 genes appear to be involved in control of cell growth in response to nutrients. Here we show that this growth control also involves a signal mediated by the heterotrimeric G protein alpha subunit homolog encoded by GPA2. A GPA2 null allele conferred a severe growth defect on cells containing a null allele of RAS2, although either mutation alone had little effect on growth rate. A constitutive allele of GPA2 could stimulate growth of a strain lacking both RAS genes. Constitutive GPA2 conferred heat shock sensitivity on both wild-type cells and cells lacking RAS function, but had no effect in a strain containing a null allele of SCH9, which encodes a kinase related to protein kinase A. The GPR1 gene was isolated and was found to encode a protein with the characteristics of a G protein-coupled receptor. Double Deltagpr1 Deltaras2 mutants displayed a severe growth defect that was suppressed by expression of the constitutive allele of GPA2, confirming that GPR1 acts upstream of GPA2. Gpr1p is expressed on the cell surface and requires sequences in the membrane-proximal region of its third cytoplasmic loop for function, as expected for a G protein-coupled receptor. GPR1 RNA was induced when cells were starved for nitrogen and amino acids. These results are consistent with a model in which the GPR1/GPA2 pathway activates the Sch9p kinase to generate a response that acts in parallel with that generated by the Ras/cAMP pathway, resulting in the integration of nutrient signals.

Full Text

The Full Text of this article is available as a PDF (530K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993 Apr;12(4):1693–1703. [PMC free article] [PubMed]
  • Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994 Apr;6(2):180–190. [PubMed]
  • Blumer KJ, Thorner J. Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4363–4367. [PMC free article] [PubMed]
  • Boone C, Davis NG, Sprague GF., Jr Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9921–9925. [PMC free article] [PubMed]
  • Broach JR. RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 1991 Jan;7(1):28–33. [PubMed]
  • Cameron S, Levin L, Zoller M, Wigler M. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell. 1988 May 20;53(4):555–566. [PubMed]
  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. [PubMed]
  • Clark CD, Palzkill T, Botstein D. Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop. J Biol Chem. 1994 Mar 25;269(12):8831–8841. [PubMed]
  • Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology. 1997 Aug;143(Pt 8):2627–2637. [PubMed]
  • Cross FR. 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics. Yeast. 1997 Jun 15;13(7):647–653. [PubMed]
  • Cross FR, Tinkelenberg AH. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell. 1991 May 31;65(5):875–883. [PubMed]
  • Dietzel C, Kurjan J. The yeast SCG1 gene: a G alpha-like protein implicated in the a- and alpha-factor response pathway. Cell. 1987 Sep 25;50(7):1001–1010. [PubMed]
  • Durnez P, Pernambuco MB, Oris E, Argüelles JC, Mergelsberg H, Thevelein JM. Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast. 1994 Aug;10(8):1049–1064. [PubMed]
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. [PubMed]
  • Freissmuth M, Gilman AG. Mutations of GS alpha designed to alter the reactivity of the protein with bacterial toxins. Substitutions at ARG187 result in loss of GTPase activity. J Biol Chem. 1989 Dec 25;264(36):21907–21914. [PubMed]
  • Gietz RD, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. [PubMed]
  • Hawes BE, Luttrell LM, Exum ST, Lefkowitz RJ. Inhibition of G protein-coupled receptor signaling by expression of cytoplasmic domains of the receptor. J Biol Chem. 1994 Jun 3;269(22):15776–15785. [PubMed]
  • Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol. 1992 Oct;138(10):2035–2043. [PubMed]
  • Hirsch JP, Cross FR. The pheromone receptors inhibit the pheromone response pathway in Saccharomyces cerevisiae by a process that is independent of their associated G alpha protein. Genetics. 1993 Dec;135(4):943–953. [PMC free article] [PubMed]
  • Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. [PMC free article] [PubMed]
  • James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996 Dec;144(4):1425–1436. [PMC free article] [PubMed]
  • Kataoka T, Broek D, Wigler M. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell. 1985 Dec;43(2 Pt 1):493–505. [PubMed]
  • Kitamura K, Shimoda C. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J. 1991 Dec;10(12):3743–3751. [PMC free article] [PubMed]
  • König B, Arendt A, McDowell JH, Kahlert M, Hargrave PA, Hofmann KP. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. [PMC free article] [PubMed]
  • Kübler E, Mösch HU, Rupp S, Lisanti MP. Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem. 1997 Aug 15;272(33):20321–20323. [PubMed]
  • Lehrach H, Diamond D, Wozney JM, Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. [PubMed]
  • Lorenz MC, Heitman J. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J. 1997 Dec 1;16(23):7008–7018. [PMC free article] [PubMed]
  • Matsumoto K, Uno I, Oshima Y, Ishikawa T. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2355–2359. [PMC free article] [PubMed]
  • Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi K, Arai K, Kaziro Y, Matsumoto K. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell. 1987 Sep 25;50(7):1011–1019. [PubMed]
  • Morishita T, Mitsuzawa H, Nakafuku M, Nakamura S, Hattori S, Anraku Y. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Science. 1995 Nov 17;270(5239):1213–1215. [PubMed]
  • Münch G, Dees C, Hekman M, Palm D. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides. Eur J Biochem. 1991 Jun 1;198(2):357–364. [PubMed]
  • Nakafuku M, Itoh H, Nakamura S, Kaziro Y. Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the alpha subunit of mammalian G proteins. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2140–2144. [PMC free article] [PubMed]
  • Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1374–1378. [PMC free article] [PubMed]
  • Nikawa J, Cameron S, Toda T, Ferguson KM, Wigler M. Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev. 1987 Nov;1(9):931–937. [PubMed]
  • O'Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ. Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem. 1988 Nov 5;263(31):15985–15992. [PubMed]
  • Ohyama K, Yamano Y, Chaki S, Kondo T, Inagami T. Domains for G-protein coupling in angiotensin II receptor type I: studies by site-directed mutagenesis. Biochem Biophys Res Commun. 1992 Dec 15;189(2):677–683. [PubMed]
  • Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. [PubMed]
  • Tanaka K, Davey J, Imai Y, Yamamoto M. Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol. 1993 Jan;13(1):80–88. [PMC free article] [PubMed]
  • Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM. Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature. 1984 Jun 7;309(5968):523–527. [PubMed]
  • Thevelein JM. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. [PubMed]
  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985 Jan;40(1):27–36. [PubMed]
  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Apr;7(4):1371–1377. [PMC free article] [PubMed]
  • Toda T, Cameron S, Sass P, Zoller M, Wigler M. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987 Jul 17;50(2):277–287. [PubMed]
  • Toda T, Cameron S, Sass P, Wigler M. SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev. 1988 May;2(5):517–527. [PubMed]
  • Wilson RB, Tatchell K. SRA5 encodes the low-Km cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):505–510. [PMC free article] [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • Gene
    Gene
    Gene links
  • GEO Profiles
    GEO Profiles
    Related GEO records
  • HomoloGene
    HomoloGene
    HomoloGene links
  • MedGen
    MedGen
    Related information in MedGen
  • Pathways + GO
    Pathways + GO
    Pathways, annotations and biological systems (BioSystems) that cite the current article.
  • Protein
    Protein
    Published protein sequences
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...