• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of embojLink to Publisher's site
EMBO J. Jun 2, 1997; 16(11): 3078–3088.
PMCID: PMC1169926

Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor.

Abstract

Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.

Full Text

The Full Text of this article is available as a PDF (505K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell. 1992 Nov 27;71(5):713–716. [PubMed]
  • Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. [PubMed]
  • Berridge MJ. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. [PMC free article] [PubMed]
  • Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. [PMC free article] [PubMed]
  • Bird GS, Putney JW., Jr Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem. 1993 Oct 15;268(29):21486–21488. [PubMed]
  • Blondel O, Takeda J, Janssen H, Seino S, Bell GI. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem. 1993 May 25;268(15):11356–11363. [PubMed]
  • Boise LH, Petryniak B, Mao X, June CH, Wang CY, Lindsten T, Bravo R, Kovary K, Leiden JM, Thompson CB. The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB. Mol Cell Biol. 1993 Mar;13(3):1911–1919. [PMC free article] [PubMed]
  • Bolen JB. Protein tyrosine kinases in the initiation of antigen receptor signaling. Curr Opin Immunol. 1995 Jun;7(3):306–311. [PubMed]
  • Castigli E, Chatila TA, Geha RS. A protein of the AP-1 family is a component of nuclear factor of activated T cells. J Immunol. 1993 Apr 15;150(8 Pt 1):3284–3290. [PubMed]
  • Chadwick CC, Saito A, Fleischer S. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2132–2136. [PMC free article] [PubMed]
  • Chen CL, Lehmeyer JE, Cooper MD. Evidence for an IgD homologue on chicken lymphocytes. J Immunol. 1982 Dec;129(6):2580–2585. [PubMed]
  • Chiles TC, Rothstein TL. Surface Ig receptor-induced nuclear AP-1-dependent gene expression in B lymphocytes. J Immunol. 1992 Aug 1;149(3):825–831. [PubMed]
  • Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H, Mikoshiba K. The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell. 1993 May 7;73(3):555–570. [PubMed]
  • Choi MS, Brines RD, Holman MJ, Klaus GG. Induction of NF-AT in normal B lymphocytes by anti-immunoglobulin or CD40 ligand in conjunction with IL-4. Immunity. 1994 Jun;1(3):179–187. [PubMed]
  • Kurosaki T, Takata M, Yamanashi Y, Inazu T, Taniguchi T, Yamamoto T, Yamamura H. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J Exp Med. 1994 May 1;179(5):1725–1729. [PMC free article] [PubMed]
  • Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature. 1996 Apr 18;380(6575):634–636. [PubMed]
  • Lalmanach-Girard AC, Chiles TC, Parker DC, Rothstein TL. T cell-dependent induction of NF-kappa B in B cells. J Exp Med. 1993 Apr 1;177(4):1215–1219. [PMC free article] [PubMed]
  • Clapham DE. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. [PubMed]
  • Lee HC, Aarhus R, Walseth TF. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):352–355. [PubMed]
  • Fasolato C, Hoth M, Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem. 1993 Oct 5;268(28):20737–20740. [PubMed]
  • Liu JL, Chiles TC, Sen RJ, Rothstein TL. Inducible nuclear expression of NF-kappa B in primary B cells stimulated through the surface Ig receptor. J Immunol. 1991 Mar 1;146(5):1685–1691. [PubMed]
  • Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed]
  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. [PubMed]
  • Maeda N, Niinobe M, Mikoshiba K. A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J. 1990 Jan;9(1):61–67. [PMC free article] [PubMed]
  • Furuichi T, Kohda K, Miyawaki A, Mikoshiba K. Intracellular channels. Curr Opin Neurobiol. 1994 Jun;4(3):294–303. [PubMed]
  • Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. [PubMed]
  • Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, Mikoshiba K. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem. 1991 Jan 15;266(2):1109–1116. [PubMed]
  • Galione A, White A, Willmott N, Turner M, Potter BV, Watson SP. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature. 1993 Sep 30;365(6445):456–459. [PubMed]
  • Galione A, McDougall A, Busa WB, Willmott N, Gillot I, Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. [PubMed]
  • Masuda ES, Naito Y, Tokumitsu H, Campbell D, Saito F, Hannum C, Arai K, Arai N. NFATx, a novel member of the nuclear factor of activated T cells family that is expressed predominantly in the thymus. Mol Cell Biol. 1995 May;15(5):2697–2706. [PMC free article] [PubMed]
  • Gouy H, Cefai D, Christensen SB, Debré P, Bismuth G. Ca2+ influx in human T lymphocytes is induced independently of inositol phosphate production by mobilization of intracellular Ca2+ stores. A study with the Ca2+ endoplasmic reticulum-ATPase inhibitor thapsigargin. Eur J Immunol. 1990 Oct;20(10):2269–2275. [PubMed]
  • Mészáros LG, Bak J, Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. [PubMed]
  • Hakamata Y, Nishimura S, Nakai J, Nakashima Y, Kita T, Imoto K. Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS Lett. 1994 Sep 26;352(2):206–210. [PubMed]
  • Harnick DJ, Jayaraman T, Ma Y, Mulieri P, Go LO, Marks AR. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. J Biol Chem. 1995 Feb 10;270(6):2833–2840. [PubMed]
  • Hartman SC, Mulligan RC. Two dominant-acting selectable markers for gene transfer studies in mammalian cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8047–8051. [PMC free article] [PubMed]
  • Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T, Saruta T, Hasegawa M, Mikoshiba K. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem. 1995 Jun 16;270(24):14700–14704. [PubMed]
  • Jain J, McCaffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL, Curran T, Rao A. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature. 1993 Sep 23;365(6444):352–355. [PubMed]
  • Jayaraman T, Ondriasová E, Ondrias K, Harnick DJ, Marks AR. The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6007–6011. [PMC free article] [PubMed]
  • Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. [PubMed]
  • Northrop JP, Ullman KS, Crabtree GR. Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex. J Biol Chem. 1993 Feb 5;268(4):2917–2923. [PubMed]
  • Khan AA, Soloski MJ, Sharp AH, Schilling G, Sabatini DM, Li SH, Ross CA, Snyder SH. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science. 1996 Jul 26;273(5274):503–507. [PubMed]
  • Kost TA, Theodorakis N, Hughes SH. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Dec 10;11(23):8287–8301. [PMC free article] [PubMed]
  • Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature. 1994 Jun 9;369(6480):497–502. [PubMed]
  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, et al. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature. 1986 Oct 2;323(6087):411–416. [PubMed]
  • Nossal GJ. Negative selection of lymphocytes. Cell. 1994 Jan 28;76(2):229–239. [PubMed]
  • Parekh AB, Terlau H, Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. [PubMed]
  • Pleiman CM, D'Ambrosio D, Cambier JC. The B-cell antigen receptor complex: structure and signal transduction. Immunol Today. 1994 Sep;15(9):393–399. [PubMed]
  • Putney JW, Jr, Bird GS. The signal for capacitative calcium entry. Cell. 1993 Oct 22;75(2):199–201. [PubMed]
  • Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996 Jun 27;381(6585):751–758. [PubMed]
  • Randriamampita C, Tsien RY. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. [PubMed]
  • Rigley KP, Harnett MM, Phillips RJ, Klaus GG. Analysis of signaling via surface immunoglobulin receptors on B cells from CBA/N mice. Eur J Immunol. 1989 Nov;19(11):2081–2086. [PubMed]
  • Rooney JW, Dubois PM, Sibley CH. Cross-linking of surface IgM activates NF-kappa B in B lymphocyte. Eur J Immunol. 1991 Dec;21(12):2993–2998. [PubMed]
  • Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4265–4269. [PMC free article] [PubMed]
  • Rothstein TL. Signals and susceptibility to programmed death in b cells. Curr Opin Immunol. 1996 Jun;8(3):362–371. [PubMed]
  • Scharenberg AM, Lin S, Cuenod B, Yamamura H, Kinet JP. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. EMBO J. 1995 Jul 17;14(14):3385–3394. [PMC free article] [PubMed]
  • Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992 Apr;13(4):136–142. [PubMed]
  • Schwartz RH. Acquisition of immunologic self-tolerance. Cell. 1989 Jun 30;57(7):1073–1081. [PubMed]
  • Seykora JT, Ravetch JV, Aderem A. Cloning and molecular characterization of the murine macrophage "68-kDa" protein kinase C substrate and its regulation by bacterial lipopolysaccharide. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2505–2509. [PMC free article] [PubMed]
  • Südhof TC, Newton CL, Archer BT, 3rd, Ushkaryov YA, Mignery GA. Structure of a novel InsP3 receptor. EMBO J. 1991 Nov;10(11):3199–3206. [PMC free article] [PubMed]
  • Sugiyama T, Yamamoto-Hino M, Miyawaki A, Furuichi T, Mikoshiba K, Hasegawa M. Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: dynamic aspects of their cell-type specific expression. FEBS Lett. 1994 Aug 1;349(2):191–196. [PubMed]
  • Takata M, Kurosaki T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med. 1996 Jul 1;184(1):31–40. [PMC free article] [PubMed]
  • Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T, Yamamura H, Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. [PMC free article] [PubMed]
  • Takata M, Homma Y, Kurosaki T. Requirement of phospholipase C-gamma 2 activation in surface immunoglobulin M-induced B cell apoptosis. J Exp Med. 1995 Oct 1;182(4):907–914. [PMC free article] [PubMed]
  • Takeda S, Masteller EL, Thompson CB, Buerstedde JM. RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4023–4027. [PMC free article] [PubMed]
  • Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. [PMC free article] [PubMed]
  • Venkataraman L, Francis DA, Wang Z, Liu J, Rothstein TL, Sen R. Cyclosporin-A sensitive induction of NF-AT in murine B cells. Immunity. 1994 Jun;1(3):189–196. [PubMed]
  • Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. [PubMed]
  • Xie H, Chiles TC, Rothstein TL. Induction of CREB activity via the surface Ig receptor of B cells. J Immunol. 1993 Jul 15;151(2):880–889. [PubMed]
  • Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K, Sekine S, Sakurada K, Miyawaki A, Furuichi T, Hasegawa M, et al. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors Channels. 1994;2(1):9–22. [PubMed]
  • Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K. Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem. 1992 Aug 15;267(23):16613–16619. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links