Logo of embojLink to Publisher's site
EMBO J. Mar 17, 1997; 16(6): 1401–1412.
PMCID: PMC1169737

Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity.

Abstract

Recent interest in understanding the spatial organization of gene expression has focused attention on nuclear structures known as speckles or interchromatin granule clusters (IGCs) revealed by immunofluorescence or electron microscopy. Staining of nuclear factors involved in pre-mRNA splicing or, more recently, transcription, reveals 20-40 speckles per nucleus, resulting in the intriguing suggestion that speckles are nuclear sites of transcription and processing. In contrast, other investigations have observed transcription in other areas of the nucleus. In this study, we have examined the localization of active transcription as detected by uridine incorporation and recently developed RNA polymerase II antibodies, and compared this pattern with that of known splicing and polyadenylation factors. Our results indicate that in actively transcribing cells, transcription and splicing factors are dispersed throughout the nucleus with abundant sites of preferred localization. In contrast, in poorly transcribing cells, polymerase II and splicing factors localize to speckles. In nuclei inactivated for transcription by drugs or heat shock, the speckle type of co-localization is accentuated. These observations suggest that bulk transcription and splicing occur throughout the nucleus during periods of active transcription; and that factors involved in these two processes re-locate to minimal speckle domains during periods of inactive transcription.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bartholomew B, Dahmus ME, Meares CF. RNA contacts subunits IIo and IIc in HeLa RNA polymerase II transcription complexes. J Biol Chem. 1986 Oct 25;261(30):14226–14231. [PubMed]
  • Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988 Jun;2(6):754–765. [PubMed]
  • Bregman DB, Du L, van der Zee S, Warren SL. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol. 1995 Apr;129(2):287–298. [PMC free article] [PubMed]
  • Carmo-Fonseca M, Tollervey D, Pepperkok R, Barabino SM, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI. Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J. 1991 Jan;10(1):195–206. [PMC free article] [PubMed]
  • Carmo-Fonseca M, Pepperkok R, Sproat BS, Ansorge W, Swanson MS, Lamond AI. In vivo detection of snRNP-rich organelles in the nuclei of mammalian cells. EMBO J. 1991 Jul;10(7):1863–1873. [PMC free article] [PubMed]
  • Nyman U, Hallman H, Hadlaczky G, Pettersson I, Sharp G, Ringertz NR. Intranuclear localization of snRNP antigens. J Cell Biol. 1986 Jan;102(1):137–144. [PMC free article] [PubMed]
  • Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI. Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. J Cell Biol. 1992 Apr;117(1):1–14. [PMC free article] [PubMed]
  • Salditt-Georgieff M, Harpold MM, Wilson MC, Darnell JE., Jr Large heterogeneous nuclear ribonucleic acid has three times as many 5' caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol Cell Biol. 1981 Feb;1(2):179–187. [PMC free article] [PubMed]
  • Carter KC, Taneja KL, Lawrence JB. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J Cell Biol. 1991 Dec;115(5):1191–1202. [PMC free article] [PubMed]
  • Carter KC, Bowman D, Carrington W, Fogarty K, McNeil JA, Fay FS, Lawrence JB. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science. 1993 Feb 26;259(5099):1330–1335. [PubMed]
  • Spector DL. Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. 1993;9:265–315. [PubMed]
  • Fakan S. Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol. 1994 Mar;4(3):86–90. [PubMed]
  • Spector DL, Fu XD, Maniatis T. Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J. 1991 Nov;10(11):3467–3481. [PMC free article] [PubMed]
  • Fakan S, Puvion E. The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol. 1980;65:255–299. [PubMed]
  • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 1990 Dec;4(12A):2112–2120. [PubMed]
  • Fey EG, Krochmalnic G, Penman S. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol. 1986 May;102(5):1654–1665. [PMC free article] [PubMed]
  • Wang J, Cao LG, Wang YL, Pederson T. Localization of pre-messenger RNA at discrete nuclear sites. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7391–7395. [PMC free article] [PubMed]
  • Harpold MM, Wilson MC, Darnell JE., Jr Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing. Mol Cell Biol. 1981 Feb;1(2):188–198. [PMC free article] [PubMed]
  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol. 1993 Jul;122(2):283–293. [PMC free article] [PubMed]
  • Hendzel MJ, Bazett-Jones DP. RNA polymerase II transcription and the functional organization of the mammalian cell nucleus. Chromosoma. 1995 Feb;103(8):509–516. [PubMed]
  • Wansink DG, Nelissen RL, de Jong L. In vitro splicing of pre-mRNA containing bromouridine. Mol Biol Rep. 1994 Mar;19(2):109–113. [PubMed]
  • Huang S, Spector DL. Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev. 1991 Dec;5(12A):2288–2302. [PubMed]
  • Huang S, Spector DL. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):305–308. [PMC free article] [PubMed]
  • Xing Y, Johnson CV, Dobner PR, Lawrence JB. Higher level organization of individual gene transcription and RNA splicing. Science. 1993 Feb 26;259(5099):1326–1330. [PubMed]
  • Huang S, Spector DL. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol. 1996 May;133(4):719–732. [PMC free article] [PubMed]
  • Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, Corden JL. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6975–6980. [PMC free article] [PubMed]
  • Jenny A, Hauri HP, Keller W. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol Cell Biol. 1994 Dec;14(12):8183–8190. [PMC free article] [PubMed]
  • Zahler AM, Lane WS, Stolk JA, Roth MB. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 1992 May;6(5):837–847. [PubMed]
  • Krause S, Fakan S, Weis K, Wahle E. Immunodetection of poly(A) binding protein II in the cell nucleus. Exp Cell Res. 1994 Sep;214(1):75–82. [PubMed]
  • Lawrence JB, Carter KC, Xing X. Probing functional organization within the nucleus: is genome structure integrated with RNA metabolism? Cold Spring Harb Symp Quant Biol. 1993;58:807–818. [PubMed]
  • Laybourn PJ, Dahmus ME. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J Biol Chem. 1990 Aug 5;265(22):13165–13173. [PubMed]
  • Möbus V, Gerharz CD, Press U, Moll R, Beck T, Mellin W, Pollow K, Knapstein PG, Kreienberg R. Morphological, immunohistochemical and biochemical characterization of 6 newly established human ovarian carcinoma cell lines. Int J Cancer. 1992 Aug 19;52(1):76–84. [PubMed]

Articles from The EMBO Journal are provided here courtesy of The European Molecular Biology Organization

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...