Logo of biochemjBJ Latest papers and much more!
Biochem J. 1993 Dec 15; 296(Pt 3): 571–576.
PMCID: PMC1137736

Primary structure and characterization of an androgen-stimulated autoantigen purified from mouse seminal-vesicle secretion.


A protein extract of mouse seminal-vesicle secretion was used to immunize mature mice (Balb/c) of both sexes. Results of Western-blot analyses for these secretory proteins indicated that only one minor protein component could be recognized by the autoantisera prepared from either autoimmunization of male mice or isoimmunization of female mice. The autoantigen was purified from seminal-vesicle secretion. The purified autoantigen retained the ability to induce autoantibody formation. The autoantigen has glycoprotein characteristics: the majority of the carbohydrate is N-linked and the remainder is O-linked. Rabbit antibodies to the autoantigen were used to isolate the corresponding cDNA from a mouse seminal-vesicle cDNA library. The primary structure deduced from the cDNA sequence was confirmed by direct amino acid sequence determination. The results indicate that the core protein consists of 131 amino acid residues. Analysis of the primary structure indicates that the autoantigen has two potential acceptor sites for the N-linked carbohydrate at Asn-12 and Asn-122, three potential phosphorylation sites for casein kinase II at Thr-55, Ser-68 and Thr-76, and three potential phosphorylation sites for protein kinase C at Thr-28, Thr-40 and Thr-124. The core protein and the carbohydrate portion together have a molecular mass of 19 kDa. Results from Western- and Northern-blot analyses for various tissues indicate that the seminal vesicle is the sole organ producing this autoantigen. Expression of this autoantigen gene was stimulated by testosterone.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bowen B, Steinberg J, Laemmli UK, Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. [PMC free article] [PubMed]
  • Chen YH, Pentecost BT, McLachlan JA, Teng CT. The androgen-dependent mouse seminal vesicle secretory protein IV: characterization and complementary deoxyribonucleic acid cloning. Mol Endocrinol. 1987 Oct;1(10):707–716. [PubMed]
  • Edge AS, Faltynek CR, Hof L, Reichert LE, Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. [PubMed]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed]
  • Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. [PubMed]
  • Kishimoto A, Nishiyama K, Nakanishi H, Uratsuji Y, Nomura H, Takeyama Y, Nishizuka Y. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1985 Oct 15;260(23):12492–12499. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lai ML, Chen SW, Chen YH. Purification and characterization of a trypsin inhibitor from mouse seminal vesicle secretion. Arch Biochem Biophys. 1991 Nov 1;290(2):265–271. [PubMed]
  • Lehrach H, Diamond D, Wozney JM, Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. [PubMed]
  • Mansson PE, Sugino A, Harris SE. Use of a cloned double stranded cDNA coding for a major androgen dependent protein in rat seminal vesicle secretion: the effect of testosterone in gene expression. Nucleic Acids Res. 1981 Feb 25;9(4):935–946. [PMC free article] [PubMed]
  • Marshall RD. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. [PubMed]
  • Ostrowski MC, Kistler MK, Kistler WS. Purification and cell-free synthesis of a major protein from rat seminal vesicle secretion. A potential marker for androgen action. J Biol Chem. 1979 Jan 25;254(2):383–390. [PubMed]
  • Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. [PubMed]
  • Pinna LA. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. [PubMed]
  • Plummer TH, Jr, Elder JH, Alexander S, Phelan AW, Tarentino AL. Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. J Biol Chem. 1984 Sep 10;259(17):10700–10704. [PubMed]
  • Tabor S, Richardson CC. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. [PMC free article] [PubMed]
  • Tsugita A, Uchida T, Mewes HW, Ataka T. A rapid vapor-phase acid (hydrochloric acid and trifluoroacetic acid) hydrolysis of peptide and protein. J Biochem. 1987 Dec;102(6):1593–1597. [PubMed]
  • Umemoto J, Bhavanandan VP, Davidson EA. Purification and properties of an endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae. J Biol Chem. 1977 Dec 10;252(23):8609–8614. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...