• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Dec 1, 1994; 304(Pt 2): 321–331.
PMCID: PMC1137495

Expression and functional properties of fumarate reductase.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Takamiya S, Kita K, Wang H, Weinstein PP, Hiraishi A, Oya H, Aoki T. Developmental changes in the respiratory chain of Ascaris mitochondria. Biochim Biophys Acta. 1993 Feb 8;1141(1):65–74. [PubMed]
  • Roos MH, Tielens AG. Differential expression of two succinate dehydrogenase subunit-B genes and a transition in energy metabolism during the development of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol. 1994 Aug;66(2):273–281. [PubMed]
  • Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223–234. [PubMed]
  • Tielens AG. Energy generation in parasitic helminths. Parasitol Today. 1994 Sep;10(9):346–352. [PubMed]
  • Cecchini G, Ackrell BA, Deshler JO, Gunsalus RP. Reconstitution of quinone reduction and characterization of Escherichia coli fumarate reductase activity. J Biol Chem. 1986 Feb 5;261(4):1808–1814. [PubMed]
  • Sucheta A, Cammack R, Weiner J, Armstrong FA. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Biochemistry. 1993 May 25;32(20):5455–5465. [PubMed]
  • Guest JR. Partial replacement of succinate dehydrogenase function by phage- and plasmid-specified fumarate reductase in Escherichia coli. J Gen Microbiol. 1981 Feb;122(2):171–179. [PubMed]
  • Condon C, Weiner JH. Fumarate reductase of Escherichia coli: an investigation of function and assembly using in vivo complementation. Mol Microbiol. 1988 Jan;2(1):43–52. [PubMed]
  • Cole ST, Condon C, Lemire BD, Weiner JH. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. [PubMed]
  • Pealing SL, Black AC, Manson FD, Ward FB, Chapman SK, Reid GA. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry. 1992 Dec 8;31(48):12132–12140. [PubMed]
  • Weiner JH, Dickie P. Fumarate reductase of Escherichia coli. Elucidation of the covalent-flavin component. J Biol Chem. 1979 Sep 10;254(17):8590–8593. [PubMed]
  • Blaut M, Whittaker K, Valdovinos A, Ackrell BA, Gunsalus RP, Cecchini G. Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. J Biol Chem. 1989 Aug 15;264(23):13599–13604. [PubMed]
  • Singer TP, McIntire WS. Covalent attachment of flavin to flavoproteins: occurrence, assay, and synthesis. Methods Enzymol. 1984;106:369–378. [PubMed]
  • Furushima R, Kita K, Takamiya S, Konishi K, Aoki T, Oya H. Structural studies on three flavin-interacting regions of the flavoprotein subunit of complex II in Ascaris suum mitochondria. FEBS Lett. 1990 Apr 24;263(2):325–328. [PubMed]
  • Ackrell BA, Cochran B, Cecchini G. Interactions of oxaloacetate with Escherichia coli fumarate reductase. Arch Biochem Biophys. 1989 Jan;268(1):26–34. [PubMed]
  • Walsh C, Fisher J, Spencer R, Graham DW, Ashton WT, Brown JE, Brown RD, Rogers EF. Chemical and enzymatic properties of riboflavin analogues. Biochemistry. 1978 May 16;17(10):1942–1951. [PubMed]
  • Robinson JJ, Weiner JH. Molecular properties of fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Can J Biochem. 1982 Aug;60(8):811–816. [PubMed]
  • Vinogradov AD, Winter D, King TE. The binding site for oxaloacetate on succinate dehydrogenase. Biochem Biophys Res Commun. 1972 Oct 17;49(2):441–444. [PubMed]
  • Phillips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol. 1987 Feb;169(2):864–873. [PMC free article] [PubMed]
  • Schröder I, Gunsalus RP, Ackrell BA, Cochran B, Cecchini G. Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis. J Biol Chem. 1991 Jul 25;266(21):13572–13579. [PubMed]
  • Vik SB, Hatefi Y. Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6749–6753. [PMC free article] [PubMed]
  • Cole ST, Grundström T, Jaurin B, Robinson JJ, Weiner JH. Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Aug;126(1):211–216. [PubMed]
  • Manodori A, Cecchini G, Schröder I, Gunsalus RP, Werth MT, Johnson MK. [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry. 1992 Mar 17;31(10):2703–2712. [PubMed]
  • Werth MT, Cecchini G, Manodori A, Ackrell BA, Schröder I, Gunsalus RP, Johnson MK. Site-directed mutagenesis of conserved cysteine residues in Escherichia coli fumarate reductase: modification of the spectroscopic and electrochemical properties of the [2Fe-2S] cluster. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8965–8969. [PMC free article] [PubMed]
  • Darlison MG, Guest JR. Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Oct 15;223(2):507–517. [PMC free article] [PubMed]
  • Werth MT, Sices H, Cecchini G, Schröder I, Lasage S, Gunsalus RP, Johnson MK. Evidence for non-cysteinyl coordination of the [2Fe-2S] cluster in Escherichia coli succinate dehydrogenase. FEBS Lett. 1992 Mar 24;299(1):1–4. [PubMed]
  • Johnson MK, Kowal AT, Morningstar JE, Oliver ME, Whittaker K, Gunsalus RP, Ackrell BA, Cecchini G. Subunit location of the iron-sulfur clusters in fumarate reductase from Escherichia coli. J Biol Chem. 1988 Oct 15;263(29):14732–14738. [PubMed]
  • Cammack R, Patil DS, Weiner JH. Evidence that centre 2 in Escherichia coli fumarate reductase is a [4Fe-4S]cluster. Biochim Biophys Acta. 1986 Apr 22;870(3):545–551. [PubMed]
  • Wood D, Darlison MG, Wilde RJ, Guest JR. Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Sep 1;222(2):519–534. [PMC free article] [PubMed]
  • Gest H. Evolutionary roots of the citric acid cycle in prokaryotes. Biochem Soc Symp. 1987;54:3–16. [PubMed]
  • Lauterbach F, Körtner C, Albracht SP, Unden G, Kröger A. The fumarate reductase operon of Wolinella succinogenes. Sequence and expression of the frdA and frdB genes. Arch Microbiol. 1990;154(4):386–393. [PubMed]
  • Birch-Machin MA, Farnsworth L, Ackrell BA, Cochran B, Jackson S, Bindoff LA, Aitken A, Diamond AG, Turnbull DM. The sequence of the flavoprotein subunit of bovine heart succinate dehydrogenase. J Biol Chem. 1992 Jun 5;267(16):11553–11558. [PubMed]
  • Kita K, Oya H, Gennis RB, Ackrell BA, Kasahara M. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem Biophys Res Commun. 1990 Jan 15;166(1):101–108. [PubMed]
  • Lemire BD, Robinson JJ, Weiner JH. Identification of membrane anchor polypeptides of Escherichia coli fumarate reductase. J Bacteriol. 1982 Dec;152(3):1126–1131. [PMC free article] [PubMed]
  • Cecchini G, Thompson CR, Ackrell BA, Westenberg DJ, Dean N, Gunsalus RP. Oxidation of reduced menaquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8898–8902. [PMC free article] [PubMed]
  • Westenberg DJ, Gunsalus RP, Ackrell BA, Cecchini G. Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli. J Biol Chem. 1990 Nov 15;265(32):19560–19567. [PubMed]
  • Westenberg DJ, Gunsalus RP, Ackrell BA, Sices H, Cecchini G. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones. J Biol Chem. 1993 Jan 15;268(2):815–822. [PubMed]
  • He DY, Gu LQ, Yu L, Yu CA. Protein-ubiquinone interaction: synthesis and biological properties of ethoxy ubiquinone derivatives. Biochemistry. 1994 Feb 1;33(4):880–884. [PubMed]
  • Takamiya S, Kita K, Matsuura K, Furushima R, Oya H. Oxidation-reduction potentials of cytochromes in Ascaris muscle mitochondria: high-redox-potential cytochrome b558 in complex II (succinate-ubiquinone reductase). Biochem Int. 1990 Sep;21(6):1073–1080. [PubMed]
  • Körtner C, Lauterbach F, Tripier D, Unden G, Kröger A. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol Microbiol. 1990 May;4(5):855–860. [PubMed]
  • Singh AP, Bragg PD. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1976 Mar 12;423(3):450–461. [PubMed]
  • Fridén H, Hederstedt L. Role of His residues in Bacillus subtilis cytochrome b558 for haem binding and assembly of succinate: quinone oxidoreductase (complex II). Mol Microbiol. 1990 Jun;4(6):1045–1056. [PubMed]
  • Hägerhäll C, Aasa R, von Wachenfeldt C, Hederstedt L. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry. 1992 Aug 18;31(32):7411–7421. [PubMed]
  • Hederstedt L, Bergman T, Jörnvall H. Processing of Bacillus subtilis succinate dehydrogenase and cytochrome b-558 polypeptides. Lack of covalently bound flavin in the Bacillus enzyme expressed in Escherichia coli. FEBS Lett. 1987 Mar 23;213(2):385–390. [PubMed]
  • Yu L, Yu CA. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases. J Biol Chem. 1982 Feb 25;257(4):2016–2021. [PubMed]
  • Yu L, Wei YY, Usui S, Yu CA. Cytochrome b560 (QPs1) of mitochondrial succinate-ubiquinone reductase. Immunochemistry, cloning, and nucleotide sequencing. J Biol Chem. 1992 Dec 5;267(34):24508–24515. [PubMed]
  • Moll R, Schäfer G. Purification and characterisation of an archaebacterial succinate dehydrogenase complex from the plasma membrane of the thermoacidophile Sulfolobus acidocaldarius. Eur J Biochem. 1991 Nov 1;201(3):593–600. [PubMed]
  • Wallace BJ, Young IG. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta. 1977 Jul 7;461(1):84–100. [PubMed]
  • Wissenbach U, Kröger A, Unden G. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol. 1990;154(1):60–66. [PubMed]
  • Wissenbach U, Ternes D, Unden G. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol. 1992;158(1):68–73. [PubMed]
  • Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981 Jun;45(2):316–354. [PMC free article] [PubMed]
  • Lemma E, Hägerhäll C, Geisler V, Brandt U, von Jagow G, Kröger A. Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim Biophys Acta. 1991 Sep 13;1059(3):281–285. [PubMed]
  • Maguire JJ, Magnusson K, Hederstedt L. Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild-type enzyme. Biochemistry. 1986 Sep 9;25(18):5202–5208. [PubMed]
  • Ackrell BA, Armstrong FA, Cochran B, Sucheta A, Yu T. Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay. FEBS Lett. 1993 Jul 12;326(1-3):92–94. [PubMed]
  • Allen PC. Helminths: comparison of their rhodoquinone. Exp Parasitol. 1973 Oct;34(2):211–219. [PubMed]
  • PARSON WW, RUDNEY H. THE BIOSYNTHESIS OF UBIQUINONE AND RHODOQUINONE FROM P-HYDROXYBENZOATE AND P-HYDROXYBENZALDEHYDE IN RHODOSPIRILLUM RUBRUM. J Biol Chem. 1965 Apr;240:1855–1863. [PubMed]
  • Gibert I, Llagostera M, Barbé J. Regulation of ubiG gene expression in Escherichia coli. J Bacteriol. 1988 Mar;170(3):1346–1349. [PMC free article] [PubMed]
  • Unden G. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch Microbiol. 1988;150(5):499–503. [PubMed]
  • Jones RW, Garland PB. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J. 1977 Apr 15;164(1):199–211. [PMC free article] [PubMed]
  • Latour DJ, Weiner JH. Assembly of Escherichia coli fumarate reductase holoenzyme. Biochem Cell Biol. 1989 Jun;67(6):251–259. [PubMed]
  • Latour DJ, Weiner JH. Investigation of Escherichia coli fumarate reductase subunit function using transposon Tn5. J Gen Microbiol. 1987 Mar;133(3):597–607. [PubMed]
  • Clarkson GH, Neagle J, Lindsay JG. Topography of succinate dehydrogenase in the mitochondrial inner membrane. A study using limited proteolysis and immunoblotting. Biochem J. 1991 Feb 1;273(Pt 3):719–724. [PMC free article] [PubMed]
  • Schülke N, Blobel G, Pain D. Primary structure, import, and assembly of the yeast homolog of succinate dehydrogenase flavoprotein. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8011–8015. [PMC free article] [PubMed]
  • Robinson KM, von Kieckebusch-Gück A, Lemire BD. Isolation and characterization of a Saccharomyces cerevisiae mutant disrupted for the succinate dehydrogenase flavoprotein subunit. J Biol Chem. 1991 Nov 15;266(32):21347–21350. [PubMed]
  • Bullis BL, Lemire BD. Isolation and characterization of the Saccharomyces cerevisiae SDH4 gene encoding a membrane anchor subunit of succinate dehydrogenase. J Biol Chem. 1994 Mar 4;269(9):6543–6549. [PubMed]
  • Saghbini M, Broomfield PL, Scheffler IE. Studies on the assembly of complex II in yeast mitochondria using chimeric human/yeast genes for the iron-sulfur protein subunit. Biochemistry. 1994 Jan 11;33(1):159–165. [PubMed]
  • Sucheta A, Ackrell BA, Cochran B, Armstrong FA. Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature. 1992 Mar 26;356(6367):361–362. [PubMed]
  • Grivennikova VG, Gavrikova EV, Timoshin AA, Vinogradov AD. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Biochim Biophys Acta. 1993 Jan 8;1140(3):282–292. [PubMed]
  • Kita K. Electron-transfer complexes of mitochondria in Ascaris suum. Parasitol Today. 1992 May;8(5):155–159. [PubMed]
  • Spiro S, Guest JR. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci. 1991 Aug;16(8):310–314. [PubMed]
  • Lin EC, Iuchi S. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet. 1991;25:361–387. [PubMed]
  • Guest JR. Oxygen-regulated gene expression in Escherichia coli. The 1992 Marjory Stephenson Prize Lecture. J Gen Microbiol. 1992 Nov;138(11):2253–2263. [PubMed]
  • Takahashi Y. Effect of glucose and cyclic adenosine 3',5'-monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J Biochem. 1975 Nov;78(5):1097–1100. [PubMed]
  • de Crombrugghe B, Busby S, Buc H. Cyclic AMP receptor protein: role in transcription activation. Science. 1984 May 25;224(4651):831–838. [PubMed]
  • Melin L, Rutberg L, von Gabain A. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J Bacteriol. 1989 Apr;171(4):2110–2115. [PMC free article] [PubMed]
  • Lombardo A, Cereghino GP, Scheffler IE. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jul;12(7):2941–2948. [PMC free article] [PubMed]
  • Iuchi S, Lin EC. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J Bacteriol. 1992 Sep;174(17):5617–5623. [PMC free article] [PubMed]
  • Iuchi S. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):23972–23980. [PubMed]
  • Iuchi S, Aristarkhov A, Dong JM, Taylor JS, Lin EC. Effects of nitrate respiration on expression of the Arc-controlled operons encoding succinate dehydrogenase and flavin-linked L-lactate dehydrogenase. J Bacteriol. 1994 Mar;176(6):1695–1701. [PMC free article] [PubMed]
  • Iuchi S, Lin EC. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1888–1892. [PMC free article] [PubMed]
  • Chiang RC, Cavicchioli R, Gunsalus RP. Identification and characterization of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli. Mol Microbiol. 1992 Jul;6(14):1913–1923. [PubMed]
  • Rabin RS, Stewart V. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol. 1993 Jun;175(11):3259–3268. [PMC free article] [PubMed]
  • Iuchi S, Lin EC. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli. J Bacteriol. 1987 Aug;169(8):3720–3725. [PMC free article] [PubMed]
  • Shaw DJ, Rice DW, Guest JR. Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli. J Mol Biol. 1983 May 15;166(2):241–247. [PubMed]
  • Spiro S, Guest JR. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):399–428. [PubMed]
  • Trageser M, Unden G. Role of cysteine residues and of metal ions in the regulatory functioning of FNR, the transcriptional regulator of anaerobic respiration in Escherichia coli. Mol Microbiol. 1989 May;3(5):593–599. [PubMed]
  • Green J, Sharrocks AD, Green B, Geisow M, Guest JR. Properties of FNR proteins substituted at each of the five cysteine residues. Mol Microbiol. 1993 Apr;8(1):61–68. [PubMed]
  • Melville SB, Gunsalus RP. Mutations in fnr that alter anaerobic regulation of electron transport-associated genes in Escherichia coli. J Biol Chem. 1990 Nov 5;265(31):18733–18736. [PubMed]
  • Niehaus F, Hantke K, Unden G. Iron content and FNR-dependent gene regulation in Escherichia coli. FEMS Microbiol Lett. 1991 Dec 1;68(3):319–323. [PubMed]
  • Green J, Guest JR. A role for iron in transcriptional activation by FNR. FEBS Lett. 1993 Aug 23;329(1-2):55–58. [PubMed]
  • Unden G, Trageser M, Duchêne A. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol Microbiol. 1990 Feb;4(2):315–319. [PubMed]
  • Lazazzera BA, Bates DM, Kiley PJ. The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev. 1993 Oct;7(10):1993–2005. [PubMed]
  • Green J, Trageser M, Six S, Unden G, Guest JR. Characterization of the FNR protein of Escherichia coli, an iron-binding transcriptional regulator. Proc Biol Sci. 1991 May 22;244(1310):137–144. [PubMed]
  • Sharrocks AD, Green J, Guest JR. FNR activates and represses transcription in vitro. Proc Biol Sci. 1991 Sep 23;245(1314):219–226. [PubMed]
  • Iuchi S, Kuritzkes DR, Lin EC. Three classes of Escherichia coli mutants selected for aerobic expression of fumarate reductase. J Bacteriol. 1986 Dec;168(3):1415–1421. [PMC free article] [PubMed]
  • Jones HM, Gunsalus RP. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product. J Bacteriol. 1987 Jul;169(7):3340–3349. [PMC free article] [PubMed]
  • Kalman LV, Gunsalus RP. The frdR gene of Escherichia coli globally regulates several operons involved in anaerobic growth in response to nitrate. J Bacteriol. 1988 Feb;170(2):623–629. [PMC free article] [PubMed]
  • Kita K, Takamiya S, Furushima R, Ma YC, Suzuki H, Ozawa T, Oya H. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Biochim Biophys Acta. 1988 Sep 14;935(2):130–140. [PubMed]
  • Santhamma KR, Raj RK. Quinone analogues: a drug of choice for the control of filariasis. Biochem Biophys Res Commun. 1993 Jan 15;190(1):201–206. [PubMed]
  • Cole ST. Nucleotide sequence and comparative analysis of the frd operon encoding the fumarate reductase of Proteus vulgaris. Extensive sequence divergence of the membrane anchors and absence of an frd-linked ampC cephalosporinase gene. Eur J Biochem. 1987 Sep 15;167(3):481–488. [PubMed]
  • Cole ST. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Mar 1;122(3):479–484. [PubMed]
  • Morris AA, Farnsworth L, Ackrell BA, Turnbull DM, Birch-Machin MA. The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994 Mar 29;1185(1):125–128. [PubMed]
  • Gould SJ, Subramani S, Scheffler IE. Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1934–1938. [PMC free article] [PubMed]
  • Kita K, Mizuchi D, Wang H, Takamiya S, Aoki T, Kojima S. cDNA sequence of three cysteine-rich clusters in the iron-sulfur subunit of complex II (succinate-ubiquinone oxidoreductase) from Caenorhabditis elegans determined by automated DNA sequencer. Electrophoresis. 1992 Aug;13(8):506–511. [PubMed]
  • Robinson KM, Lemire BD. Isolation and nucleotide sequence of the Saccharomyces cerevisiae gene for the succinate dehydrogenase flavoprotein subunit. J Biol Chem. 1992 May 15;267(14):10101–10107. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links