• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Nov 15, 1995; 312(Pt 1): 39–48.
PMCID: PMC1136224

Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus.


To test the hypothesis that selective pressure has led to the retention of cellulose-binding domains (CBDs) by hemicellulase enzymes from aerobic bacteria, four new xylanase (xyn) genes from two cellulolytic soil bacteria, Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus, have been isolated and sequenced. Pseudomonas genes xynE and xynF encoded modular xylanases (XYLE and XYLF) with predicted M(r) values of 68,600 and 65000 respectively. XYLE contained a glycosyl hydrolase family 11 catalytic domain at its N-terminus, followed by three other domains; the second of these exhibited sequence identity with NodB from rhizobia. The C-terminal domain (40 residues) exhibited significant sequence identity with a non-catalytic domain of previously unknown function, conserved in all the cellulases and one of the hemicellulases previously characterized from the pseudomonad, and was shown to function as a CBD when fused to the reporter protein glutathione-S-transferase. XYLF contained a C-terminal glycosyl hydrolase family 10 catalytic domain and a novel CBD at its N-terminus. C. mixtus genes xynA and xynB exhibited substantial sequence identity with xynE and xynF respectively, and encoded modular xylanases with the same molecular architecture and, by inference, the same functional properties. In the absence of extensive cross-hybridization between other multiple cel (cellulase) and xyn genes from P. fluorescens subsp. cellulosa and genomic DNA from C. mixtus, similarity between the two pairs of xylanases may indicate a recent transfer of genes between the two bacteria.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Coughlan MP, Hazlewood GP. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):259–289. [PubMed]
  • Hazlewood GP, Laurie JI, Ferreira LM, Gilbert HJ. Pseudomonas fluorescens subsp. cellulosa: an alternative model for bacterial cellulase. J Appl Bacteriol. 1992 Mar;72(3):244–251. [PubMed]
  • Wynne EC, Pemberton JM. Cloning of a Gene Cluster from Cellvibrio mixtus which Codes for Cellulase, Chitinase, Amylase, and Pectinase. Appl Environ Microbiol. 1986 Dec;52(6):1362–1367. [PMC free article] [PubMed]
  • Ferreira LM, Durrant AJ, Hall J, Hazlewood GP, Gilbert HJ. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J. 1990 Jul 1;269(1):261–264. [PMC free article] [PubMed]
  • Kellett LE, Poole DM, Ferreira LM, Durrant AJ, Hazlewood GP, Gilbert HJ. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J. 1990 Dec 1;272(2):369–376. [PMC free article] [PubMed]
  • Millward-Sadler SJ, Poole DM, Henrissat B, Hazlewood GP, Clarke JH, Gilbert HJ. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol Microbiol. 1994 Jan;11(2):375–382. [PubMed]
  • Gilbert HJ, Blazek R, Bullman HM, Minton NP. Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora. J Gen Microbiol. 1986 Jan;132(1):151–160. [PubMed]
  • Chambers SP, Prior SE, Barstow DA, Minton NP. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. [PubMed]
  • Clarke JH, Laurie JI, Gilbert HJ, Hazlewood GP. Multiple xylanases of Cellulomonas fimi are encoded by distinct genes. FEMS Microbiol Lett. 1991 Oct 15;67(3):305–309. [PubMed]
  • Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J. 1995 Feb 1;305(Pt 3):1005–1010. [PMC free article] [PubMed]
  • Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982 Apr;43(4):777–780. [PMC free article] [PubMed]
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Staden R. A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res. 1980 Aug 25;8(16):3673–3694. [PMC free article] [PubMed]
  • Hazlewood GP, Davidson K, Laurie JI, Romaniec MP, Gilbert HJ. Cloning and sequencing of the celA gene encoding endoglucanase A of Butyrivibrio fibrisolvens strain A46. J Gen Microbiol. 1990 Oct;136(10):2089–2097. [PubMed]
  • Sedmak JJ, Grossberg SE. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Schwarz WH, Bronnenmeier K, Gräbnitz F, Staudenbauer WL. Activity staining of cellulases in polyacrylamide gels containing mixed linkage beta-glucans. Anal Biochem. 1987 Jul;164(1):72–77. [PubMed]
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed]
  • Wood TM. The cellulase of Fusarium solani. Purification and specificity of the -(1-4)-glucanase and the -D-glucosidase components. Biochem J. 1971 Feb;121(3):353–362. [PMC free article] [PubMed]
  • Fontes CM, Hazlewood GP, Morag E, Hall J, Hirst BH, Gilbert HJ. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J. 1995 Apr 1;307(Pt 1):151–158. [PMC free article] [PubMed]
  • Coutinho JB, Moser B, Kilburn DG, Warren RA, Miller RC., Jr Nucleotide sequence of the endoglucanase C gene (cenC) of Cellulomonas fimi, its high-level expression in Escherichia coli, and characterization of its products. Mol Microbiol. 1991 May;5(5):1221–1233. [PubMed]
  • Coutinho JB, Gilkes NR, Warren RA, Kilburn DG, Miller RC., Jr The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol. 1992 May;6(9):1243–1252. [PubMed]
  • Meinke A, Braun C, Gilkes NR, Kilburn DG, Miller RC, Jr, Warren RA. Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J Bacteriol. 1991 Jan;173(1):308–314. [PMC free article] [PubMed]
  • Meinke A, Gilkes NR, Kilburn DG, Miller RC, Jr, Warren RA. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides. J Bacteriol. 1991 Nov;173(22):7126–7135. [PMC free article] [PubMed]
  • John M, Röhrig H, Schmidt J, Wieneke U, Schell J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):625–629. [PMC free article] [PubMed]
  • Rixon JE, Ferreira LM, Durrant AJ, Laurie JI, Hazlewood GP, Gilbert HJ. Characterization of the gene celD and its encoded product 1,4-beta-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa. Biochem J. 1992 Aug 1;285(Pt 3):947–955. [PMC free article] [PubMed]
  • Zappe H, Jones WA, Woods DR. Nucleotide sequence of a Clostridium acetobutylicum P262 xylanase gene (xynB). Nucleic Acids Res. 1990 Apr 25;18(8):2179–2179. [PMC free article] [PubMed]
  • Yang RC, Mackenzie CR, Bilous D, Seligy VL, Narang SA. Molecular Cloning and Expression of a Xylanase Gene from Bacillus polymyxa in Escherichia coli. Appl Environ Microbiol. 1988 Apr;54(4):1023–1029. [PMC free article] [PubMed]
  • Schofield PR, Watson JM. DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res. 1986 Apr 11;14(7):2891–2903. [PMC free article] [PubMed]
  • Török I, Kondorosi E, Stepkowski T, Pósfai J, Kondorosi A. Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucleic Acids Res. 1984 Dec 21;12(24):9509–9524. [PMC free article] [PubMed]
  • Rossen L, Johnston AW, Downie JA. DNA sequence of the Rhizobium leguminosarum nodulation genes nodAB and C required for root hair curling. Nucleic Acids Res. 1984 Dec 21;12(24):9497–9508. [PMC free article] [PubMed]
  • Scott KF. Conserved nodulation genes from the non-legume symbiont Bradyrhizobium sp. (Parasponia). Nucleic Acids Res. 1986 Apr 11;14(7):2905–2919. [PMC free article] [PubMed]
  • Hall J, Gilbert HJ. The nucleotide sequence of a carboxymethylcellulase gene from Pseudomonas fluorescens subsp. cellulosa. Mol Gen Genet. 1988 Jul;213(1):112–117. [PubMed]
  • Gilbert HJ, Hall J, Hazlewood GP, Ferreira LM. The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Mol Microbiol. 1990 May;4(5):759–767. [PubMed]
  • Ferreira LM, Hazlewood GP, Barker PJ, Gilbert HJ. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. Biochem J. 1991 Nov 1;279(Pt 3):793–799. [PMC free article] [PubMed]
  • Hall J, Hazlewood GP, Huskisson NS, Durrant AJ, Gilbert HJ. Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa: internal signal sequence and unusual protein processing. Mol Microbiol. 1989 Sep;3(9):1211–1219. [PubMed]
  • Lee YE, Lowe SE, Henrissat B, Zeikus JG. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. J Bacteriol. 1993 Sep;175(18):5890–5898. [PMC free article] [PubMed]
  • O'Neill G, Goh SH, Warren RA, Kilburn DG, Miller RC., Jr Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene. 1986;44(2-3):325–330. [PubMed]
  • Grépinet O, Chebrou MC, Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol. 1988 Oct;170(10):4582–4588. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...