• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Aug 15, 1988; 254(1): 223–228.
PMCID: PMC1135060

Transmembrane signalling at epidermal growth factor receptors overexpressed in NIH 3T3 cells. Phosphoinositide hydrolysis, cytosolic Ca2+ increase and alkalinization correlate with epidermal-growth-factor-induced cell proliferation.

Abstract

NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barnes DW. Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture. J Cell Biol. 1982 Apr;93(1):1–4. [PMC free article] [PubMed]
  • Batty IR, Nahorski SR, Irvine RF. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J. 1985 Nov 15;232(1):211–215. [PMC free article] [PubMed]
  • Berridge MJ. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. [PubMed]
  • Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. [PubMed]
  • Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. [PMC free article] [PubMed]
  • Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914. [PubMed]
  • Chambard JC, Paris S, L'Allemain G, Pouysségur J. Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature. 1987 Apr 23;326(6115):800–803. [PubMed]
  • Chen WS, Lazar CS, Poenie M, Tsien RY, Gill GN, Rosenfeld MG. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature. 328(6133):820–823. [PubMed]
  • Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR, Schlessinger J, Aaronson SA. Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell. 1987 Dec 24;51(6):1063–1070. [PubMed]
  • Gill GN, Lazar CS. Increased phosphotyrosine content and inhibition of proliferation in EGF-treated A431 cells. Nature. 1981 Sep 24;293(5830):305–307. [PubMed]
  • Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed]
  • Hawkins PT, Stephens L, Downes CP. Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate. Biochem J. 1986 Sep 1;238(2):507–516. [PMC free article] [PubMed]
  • Hepler JR, Nakahata N, Lovenberg TW, DiGuiseppi J, Herman B, Earp HS, Harden TK. Epidermal growth factor stimulates the rapid accumulation of inositol (1,4,5)-trisphosphate and a rise in cytosolic calcium mobilized from intracellular stores in A431 cells. J Biol Chem. 1987 Mar 5;262(7):2951–2956. [PubMed]
  • Hesketh TR, Moore JP, Morris JD, Taylor MV, Rogers J, Smith GA, Metcalfe JC. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature. 1985 Feb 7;313(6002):481–484. [PubMed]
  • Hunter T, Cooper JA. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897–930. [PubMed]
  • Irvine RF, Moor RM. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. [PMC free article] [PubMed]
  • Irvine RF, Anggård EE, Letcher AJ, Downes CP. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochem J. 1985 Jul 15;229(2):505–511. [PMC free article] [PubMed]
  • Irvine RF, Letcher AJ, Heslop JP, Berridge MJ. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. [PubMed]
  • Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH, Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1337–1341. [PMC free article] [PubMed]
  • Livneh E, Prywes R, Kashles O, Reiss N, Sasson I, Mory Y, Ullrich A, Schlessinger J. Reconstitution of human epidermal growth factor receptors and its deletion mutants in cultured hamster cells. J Biol Chem. 1986 Sep 25;261(27):12490–12497. [PubMed]
  • Lopez-Rivas A, Mendoza SA, Nånberg E, Sinnett-Smith J, Rozengurt E. Ca2+-mobilizing actions of platelet-derived growth factor differ from those of bombesin and vasopressin in Swiss 3T3 mouse cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5768–5772. [PMC free article] [PubMed]
  • Moolenaar WH. Effects of growth factors on intracellular pH regulation. Annu Rev Physiol. 1986;48:363–376. [PubMed]
  • Moolenaar WH, Aerts RJ, Tertoolen LG, de Laat SW. The epidermal growth factor-induced calcium signal in A431 cells. J Biol Chem. 1986 Jan 5;261(1):279–284. [PubMed]
  • Morris AP, Gallacher DV, Irvine RF, Petersen OH. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature. 1987 Dec 17;330(6149):653–655. [PubMed]
  • Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. [PubMed]
  • Pandiella A, Malgaroli A, Meldolesi J, Vicentini LM. EGF raises cytosolic Ca2+ in A431 and Swiss 3T3 cells by a dual mechanism. Redistribution from intracellular stores and stimulated influx. Exp Cell Res. 1987 May;170(1):175–185. [PubMed]
  • Pandiella A, Vicentini LM, Meldolesi J. Protein kinase C-mediated feed back inhibition of the Ca2+ response at the EGF receptor. Biochem Biophys Res Commun. 1987 Nov 30;149(1):145–151. [PubMed]
  • Pierce JH, Ruggiero M, Fleming TP, Di Fiore PP, Greenberger JS, Varticovski L, Schlessinger J, Rovera G, Aaronson SA. Signal transduction through the EGF receptor transfected in IL-3-dependent hematopoietic cells. Science. 1988 Feb 5;239(4840):628–631. [PubMed]
  • Pike LJ, Eakes AT. Epidermal growth factor stimulates the production of phosphatidylinositol monophosphate and the breakdown of polyphosphoinositides in A431 cells. J Biol Chem. 1987 Feb 5;262(4):1644–1651. [PubMed]
  • Rink TJ, Tsien RY, Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. [PMC free article] [PubMed]
  • Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. [PubMed]
  • Schlessinger J. Allosteric regulation of the epidermal growth factor receptor kinase. J Cell Biol. 1986 Dec;103(6 Pt 1):2067–2072. [PMC free article] [PubMed]
  • Velu TJ, Beguinot L, Vass WC, Willingham MC, Merlino GT, Pastan I, Lowy DR. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science. 1987 Dec 4;238(4832):1408–1410. [PubMed]
  • Wahl MI, Sweatt JD, Carpenter G. Epidermal growth factor (EGF) stimulates inositol trisphosphate formation in cells which overexpress the EGF receptor. Biochem Biophys Res Commun. 1987 Feb 13;142(3):688–695. [PubMed]
  • Whiteley B, Glaser L. Epidermal growth factor (EGF) promotes phosphorylation at threonine-654 of the EGF receptor: possible role of protein kinase C in homologous regulation of the EGF receptor. J Cell Biol. 1986 Oct;103(4):1355–1362. [PMC free article] [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • MedGen
    MedGen
    Related information in MedGen
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links