• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Feb 15, 1993; 290(Pt 1): 205–218.
PMCID: PMC1132403

Evolutionary families of peptidases.

Abstract

The available amino acid sequences of peptidases have been examined, and the enzymes have been allocated to evolutionary families. Some of the families can be grouped together in 'clans' that show signs of distant relationship, but nevertheless, it appears that there may be as many as 60 evolutionary lines of peptidases with separate origins. Some of these contain members with quite diverse peptidase activities, and yet there are some striking examples of convergence. We suggest that the classification by families could be used as an extension of the current classification by catalytic type.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Kahn P, Cameron G. EMBL Data Library. Methods Enzymol. 1990;183:23–31. [PubMed]
  • Barker WC, George DG, Hunt LT. Protein sequence database. Methods Enzymol. 1990;183:31–49. [PubMed]
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PMC free article] [PubMed]
  • Reeck GR, de Haën C, Teller DC, Doolittle RF, Fitch WM, Dickerson RE, Chambon P, McLachlan AD, Margoliash E, Jukes TH, et al. "Homology" in proteins and nucleic acids: a terminology muddle and a way out of it. Cell. 1987 Aug 28;50(5):667–667. [PubMed]
  • Rawlings ND, Barrett AJ. Bone morphogenetic protein 1 is homologous in part with calcium-dependent serine proteinase. Biochem J. 1990 Mar 1;266(2):622–624. [PMC free article] [PubMed]
  • Ikeda M, Yaginuma T, Kobayashi M, Yamashita O. cDNA cloning, sequencing and temporal expression of the protease responsible for vitellin degradation in the silkworm, Bombyx mori. Comp Biochem Physiol B. 1991;99(2):405–411. [PubMed]
  • Pirkle H, Markland FS, Theodor I, Baumgartner R, Bajwa SS, Kirakossian H. The primary structure of crotalase, a thrombin-like venom enzyme, exhibits closer homology to kallikrein than to other serine proteases. Biochem Biophys Res Commun. 1981 Mar 31;99(2):715–721. [PubMed]
  • Light A, Janska H. The amino-terminal sequence of the catalytic subunit of bovine enterokinase. J Protein Chem. 1991 Oct;10(5):475–480. [PubMed]
  • Svendsen I, Jensen MR, Breddam K. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 1991 Nov 4;292(1-2):165–167. [PubMed]
  • Sloma A, Rudolph CF, Rufo GA, Jr, Sullivan BJ, Theriault KA, Ally D, Pero J. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):1024–1029. [PMC free article] [PubMed]
  • Granier B, Duez C, Lepage S, Englebert S, Dusart J, Dideberg O, Van Beeumen J, Frère JM, Ghuysen JM. Primary and predicted secondary structures of the Actinomadura R39 extracellular DD-peptidase, a penicillin-binding protein (PBP) related to the Escherichia coli PBP4. Biochem J. 1992 Mar 15;282(Pt 3):781–788. [PMC free article] [PubMed]
  • Li WB, Bzik DJ, Horii T, Inselburg J. Structure and expression of the Plasmodium falciparum SERA gene. Mol Biochem Parasitol. 1989 Feb;33(1):13–25. [PubMed]
  • Dietrich RA, Maslyar DJ, Heupel RC, Harada JJ. Spatial patterns of gene expression in Brassica napus seedlings: identification of a cortex-specific gene and localization of mRNAs encoding isocitrate lyase and a polypeptide homologous to proteinases. Plant Cell. 1989 Jan;1(1):73–80. [PMC free article] [PubMed]
  • Guerrero FD, Jones JT, Mullet JE. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. [PubMed]
  • Koehler SM, Ho TH. Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell. 1990 Aug;2(8):769–783. [PMC free article] [PubMed]
  • Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S. Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem. 1991 Sep 5;266(25):16897–16902. [PubMed]
  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. [PubMed]
  • Takeuchi H, Shibano Y, Morihara K, Fukushima J, Inami S, Keil B, Gilles AM, Kawamoto S, Okuda K. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem J. 1992 Feb 1;281(Pt 3):703–708. [PMC free article] [PubMed]
  • Kinoshita T, Fukuzawa H, Shimada T, Saito T, Matsuda Y. Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4693–4697. [PMC free article] [PubMed]
  • Sato SM, Sargent TD. Molecular approach to dorsoanterior development in Xenopus laevis. Dev Biol. 1990 Jan;137(1):135–141. [PubMed]
  • Roth WW, Mackin RB, Spiess J, Goodman RH, Noe BD. Primary structure and tissue distribution of anglerfish carboxypeptidase H. Mol Cell Endocrinol. 1991 Jul;78(3):171–178. [PubMed]
  • Behrens M, Michaelis G, Pratje E. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. Mol Gen Genet. 1991 Aug;228(1-2):167–176. [PubMed]
  • Patthy L. Evolutionary assembly of blood coagulation proteins. Semin Thromb Hemost. 1990 Jul;16(3):245–259. [PubMed]
  • Delbaere LT, Hutcheon WL, James MN, Thiessen WE. Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes. Nature. 1975 Oct 30;257(5529):758–763. [PubMed]
  • Choi HK, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature. 1991 Nov 7;354(6348):37–43. [PubMed]
  • Drapeau GR. The primary structure of staphylococcal protease. Can J Biochem. 1978 Jun;56(6):534–544. [PubMed]
  • Bachovchin WW, Plaut AG, Flentke GR, Lynch M, Kettner CA. Inhibition of IgA1 proteinases from Neisseria gonorrhoeae and Hemophilus influenzae by peptide prolyl boronic acids. J Biol Chem. 1990 Mar 5;265(7):3738–3743. [PubMed]
  • Tsunasawa S, Masaki T, Hirose M, Soejima M, Sakiyama F. The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease. J Biol Chem. 1989 Mar 5;264(7):3832–3839. [PubMed]
  • Chambers TJ, Weir RC, Grakoui A, McCourt DW, Bazan JF, Fletterick RJ, Rice CM. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8898–8902. [PMC free article] [PubMed]
  • Hartley BS. Homologies in serine proteinases. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):77–87. [PubMed]
  • Barr PJ. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. [PubMed]
  • Stone SR, Rennex D, Wikstrom P, Shaw E, Hofsteenge J. Inactivation of prolyl endopeptidase by a peptidylchloromethane. Kinetics of inactivation and identification of sites of modification. Biochem J. 1991 Jun 15;276(Pt 3):837–840. [PMC free article] [PubMed]
  • Barrett AJ, Rawlings ND. Oligopeptidases, and the emergence of the prolyl oligopeptidase family. Biol Chem Hoppe Seyler. 1992 Jul;373(7):353–360. [PubMed]
  • Polgár L. Prolyl endopeptidase catalysis. A physical rather than a chemical step is rate-limiting. Biochem J. 1992 May 1;283(Pt 3):647–648. [PMC free article] [PubMed]
  • Stone SR, Rennex D, Wikstrom P, Shaw E, Hofsteenge J. Peptidyldiazomethanes. A novel mechanism of interaction with prolyl endopeptidase. Biochem J. 1992 May 1;283(Pt 3):871–876. [PMC free article] [PubMed]
  • Liao DI, Remington SJ. Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. J Biol Chem. 1990 Apr 25;265(12):6528–6531. [PubMed]
  • Joris B, Ghuysen JM, Dive G, Renard A, Dideberg O, Charlier P, Frère JM, Kelly JA, Boyington JC, Moews PC, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988 Mar 1;250(2):313–324. [PMC free article] [PubMed]
  • Kelly JA, Knox JR, Zhao H, Frère JM, Ghaysen JM. Crystallographic mapping of beta-lactams bound to a D-alanyl-D-alanine peptidase target enzyme. J Mol Biol. 1989 Sep 20;209(2):281–295. [PubMed]
  • Mayo MA, Robinson DJ, Jolly CA, Hyman L. Nucleotide sequence of potato leafroll luteovirus RNA. J Gen Virol. 1989 May;70(Pt 5):1037–1051. [PubMed]
  • Amerik AYu, Antonov VK, Gorbalenya AE, Kotova SA, Rotanova TV, Shimbarevich EV. Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett. 1991 Aug 5;287(1-2):211–214. [PubMed]
  • Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. [PubMed]
  • Delaney SJ, Hayward DC, Barleben F, Fischbach KF, Miklos GL. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7214–7218. [PMC free article] [PubMed]
  • Bazan JF, Fletterick RJ. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7872–7876. [PMC free article] [PubMed]
  • Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 1989 Jan 30;243(2):103–114. [PubMed]
  • Yu SF, Lloyd RE. Identification of essential amino acid residues in the functional activity of poliovirus 2A protease. Virology. 1991 Jun;182(2):615–625. [PubMed]
  • Tang J, James MN, Hsu IN, Jenkins JA, Blundell TL. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. [PubMed]
  • Miller M, Jaskólski M, Rao JK, Leis J, Wlodawer A. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature. 1989 Feb 9;337(6207):576–579. [PubMed]
  • Seelmeier S, Schmidt H, Turk V, von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6612–6616. [PMC free article] [PubMed]
  • Tsuru D, Shimada S, Maruta S, Yoshimoto T, Oda K, Murao S, Miyata T, Iwanaga S. Isolation and amino acid sequence of a peptide containing an epoxide-reactive residue from the thermolysin-digest of Scytalidium lignicolum acid protease B. J Biochem. 1986 May;99(5):1537–1539. [PubMed]
  • Takahashi K, Inoue H, Sakai K, Kohama T, Kitahara S, Takishima K, Tanji M, Athauda SB, Takahashi T, Akanuma H, et al. The primary structure of Aspergillus niger acid proteinase A. J Biol Chem. 1991 Oct 15;266(29):19480–19483. [PubMed]
  • Medina JF, Wetterholm A, Rådmark O, Shapiro R, Haeggström JZ, Vallee BL, Samuelsson B. Leukotriene A4 hydrolase: determination of the three zinc-binding ligands by site-directed mutagenesis and zinc analysis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7620–7624. [PMC free article] [PubMed]
  • Matthews BW, Weaver LH, Kester WR. The conformation of thermolysin. J Biol Chem. 1974 Dec 25;249(24):8030–8044. [PubMed]
  • Le Moual H, Devault A, Roques BP, Crine P, Boileau G. Identification of glutamic acid 646 as a zinc-coordinating residue in endopeptidase-24.11. J Biol Chem. 1991 Aug 25;266(24):15670–15674. [PubMed]
  • Bode W, Gomis-Rüth FX, Huber R, Zwilling R, Stöcker W. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature. 1992 Jul 9;358(6382):164–167. [PubMed]
  • Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. [PubMed]
  • Becker AB, Roth RA. An unusual active site identified in a family of zinc metalloendopeptidases. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3835–3839. [PMC free article] [PubMed]
  • Meulenberg JJ, Sellink E, Loenen WA, Riegman NH, van Kleef M, Postma PW. Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett. 1990 Sep 15;59(3):337–343. [PubMed]
  • DiBenedetto AJ, Harada HA, Wolfner MF. Structure, cell-specific expression, and mating-induced regulation of a Drosophila melanogaster male accessory gland gene. Dev Biol. 1990 May;139(1):134–148. [PubMed]
  • Zwickl P, Grziwa A, Pühler G, Dahlmann B, Lottspeich F, Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...