• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of biochemjBJ Latest papers and much more!
Biochem J. Jan 1, 1992; 281(Pt 1): 21–40.
PMCID: PMC1130636

Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (6.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ackerman JJ, Grove TH, Wong GG, Gadian DG, Radda GK. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature. 1980 Jan 10;283(5743):167–170. [PubMed]
  • Adams V, Bosch W, Schlegel J, Wallimann T, Brdiczka D. Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases. Biochim Biophys Acta. 1989 Jun 6;981(2):213–225. [PubMed]
  • Altschuld RA, Brierley GP. Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation. J Mol Cell Cardiol. 1977 Nov;9(11):875–896. [PubMed]
  • Apple FS, Rogers MA. Mitochondrial creatine kinase activity alterations in skeletal muscle during long-distance running. J Appl Physiol (1985) 1986 Aug;61(2):482–485. [PubMed]
  • Arnold H, Pette D. Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem. 1970 Aug;15(2):360–366. [PubMed]
  • Arrio-Dupont M. An example of substrate channeling between co-immobilized enzymes. Coupled activity of myosin ATPase and creatine kinase bound to frog heart myofilaments. FEBS Lett. 1988 Nov 21;240(1-2):181–185. [PubMed]
  • Ashby B, Frieden C, Bischoff R. Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle. J Cell Biol. 1979 May;81(2):361–373. [PMC free article] [PubMed]
  • Babbitt PC, West BL, Buechter DD, Kuntz ID, Kenyon GL. Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase in Escherichia coli leads to improved recovery of active enzyme. Biotechnology (N Y) 1990 Oct;8(10):945–949. [PubMed]
  • Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol. 1990 Mar;258(3 Pt 1):C377–C389. [PubMed]
  • Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986 May 30;232(4754):1121–1123. [PubMed]
  • Barbour RL, Ribaudo J, Chan SH. Effect of creatine kinase activity on mitochondrial ADP/ATP transport. Evidence for a functional interaction. J Biol Chem. 1984 Jul 10;259(13):8246–8251. [PubMed]
  • Barbour RL, Sotak CH, Levy GC, Chan SH. Use of gated perfusion to study early effects of anoxia on cardiac energy metabolism: a new 31P NMR method. Biochemistry. 1984 Dec 4;23(25):6053–6062. [PubMed]
  • Barrantes FJ, Mieskes G, Wallimann T. A membrane-associated creatine kinase (EC 2.7.3.2) identified as an acidic species of the non-receptor, peripheral nu-proteins in Torpedo acetylcholine receptor membranes. FEBS Lett. 1983 Feb 21;152(2):270–276. [PubMed]
  • Barrantes FJ, Mieskes G, Wallimann T. Creatine kinase activity in the Torpedo electrocyte and in the nonreceptor, peripheral v proteins from acetylcholine receptor-rich membranes. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5440–5444. [PMC free article] [PubMed]
  • Barrantes FJ, Braceras A, Caldironi HA, Mieskes G, Moser H, Toren EC, Jr, Roque ME, Wallimann T, Zechel A. Isolation and characterization of acetylcholine receptor membrane-associated (nonreceptor v2-protein) and soluble electrocyte creatine kinases. J Biol Chem. 1985 Mar 10;260(5):3024–3034. [PubMed]
  • Bartels EM, Elliott GF. Donnan potentials from the A- and I-bands of glycerinated and chemically skinned muscles, relaxed and in rigor. Biophys J. 1985 Jul;48(1):61–76. [PMC free article] [PubMed]
  • Baskin RJ, Deamer DW. A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum. J Biol Chem. 1970 Mar 25;245(6):1345–1347. [PubMed]
  • Belousova LV, Fedosov SN, Orlova EV, Stel'mashchuk VYa The structural features of beef heart mitochondrial creatine kinase. Biochem Int. 1991 May;24(1):51–58. [PubMed]
  • Benz R, Kottke M, Brdiczka D. The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta. 1990 Mar;1022(3):311–318. [PubMed]
  • Berger SJ, DeVries GW, Carter JG, Schulz DW, Passonneau PN, Lowry OH, Ferrendelli JA. The distribution of the components of the cyclic GMP cycle in retina. J Biol Chem. 1980 Apr 10;255(7):3128–3133. [PubMed]
  • Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–862. [PubMed]
  • Bessman SP, Fonyo A. The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Commun. 1966 Mar 8;22(5):597–602. [PubMed]
  • Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981 Jan 30;211(4481):448–452. [PubMed]
  • Biermans W, Bernaert I, De Bie M, Nijs B, Jacob W. Ultrastructural localisation of creatine kinase activity in the contact sites between inner and outer mitochondrial membranes of rat myocardium. Biochim Biophys Acta. 1989 Apr 17;974(1):74–80. [PubMed]
  • Biermans W, Bakker A, Jacob W. Contact site between inner and outer mitochondrial membrane: a dynamic microcompartment for creatine kinase activity. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):225–228. [PubMed]
  • Binderman I, Harel S, Earon Y, Tomer A, Weisman Y, Kaye AM, Sömjen D. Acute stimulation of creatine kinase activity by vitamin D metabolites in the developing cerebellum. Biochim Biophys Acta. 1988 Oct 28;972(1):9–16. [PubMed]
  • Bittl JA, Ingwall JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed]
  • Blum H, Nioka S, Johnson RG., Jr Activation of the Na+, K(+)-ATPase in Narcine brasiliensis. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1247–1251. [PMC free article] [PubMed]
  • Blum H, Balschi JA, Johnson RG., Jr Coupled in vivo activity of creatine phosphokinase and the membrane-bound (Na+,K+)-ATPase in the resting and stimulated electric organ of the electric fish Narcine brasiliensis. J Biol Chem. 1991 Jun 5;266(16):10254–10259. [PubMed]
  • Booth RF, Clark JB. Studies on the mitochondrially bound form of rat brain creatine kinase. Biochem J. 1978 Jan 15;170(1):145–151. [PMC free article] [PubMed]
  • Borroni E. Role of creatine phosphate in the discharge of the electric organ of Torpedo marmorata. J Neurochem. 1984 Sep;43(3):795–798. [PubMed]
  • Bowditch J, Nigdikar S, Brown AK, Dow JW. 5'-Nucleotidase activity of isolated mature rat cardiac myocytes. Biochim Biophys Acta. 1985 Apr 22;845(1):21–26. [PubMed]
  • Brady ST, Lasek RJ. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981 Feb;23(2):515–523. [PubMed]
  • Brdiczka D. Interaction of mitochondrial porin with cytosolic proteins. Experientia. 1990 Feb 15;46(2):161–167. [PubMed]
  • Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta. 1991 Nov 13;1071(3):291–312. [PubMed]
  • Brindle K, Braddock P, Fulton S. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase. Biochemistry. 1990 Apr 3;29(13):3295–3302. [PubMed]
  • Bronstein WW, Knull HR. Interaction of muscle glycolytic enzymes with thin filament proteins. Can J Biochem. 1981 Jul;59(7):494–499. [PubMed]
  • Brooks SP, Storey KB. Reevaluation of the "glycolytic complex" in muscle: a multitechnique approach using trout white muscle. Arch Biochem Biophys. 1988 Nov 15;267(1):13–22. [PubMed]
  • Brooks SP, Suelter CH. Association of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Arch Biochem Biophys. 1987 Feb 15;253(1):122–132. [PubMed]
  • Brooks SP, Suelter CH. Compartmented coupling of chicken heart mitochondrial creatine kinase to the nucleotide translocase requires the outer mitochondrial membrane. Arch Biochem Biophys. 1987 Aug 15;257(1):144–153. [PubMed]
  • Brosnan MJ, Chen LH, Wheeler CE, Van Dyke TA, Koretsky AP. Phosphocreatine protects ATP from a fructose load in transgenic mouse liver expressing creatine kinase. Am J Physiol. 1991 Jun;260(6 Pt 1):C1191–C1200. [PubMed]
  • Brumback RA, Gerst JW, Knull HR. High energy phosphate depletion in a model of defective muscle glycolysis. Muscle Nerve. 1983 Jan;6(1):52–55. [PubMed]
  • Bücheler K, Adams V, Brdiczka D. Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta. 1991 Feb 8;1056(3):233–242. [PubMed]
  • Burt CT, Glonek T, Bárány M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem. 1976 May 10;251(9):2584–2591. [PubMed]
  • Cadoux-Hudson TA, Blackledge MJ, Radda GK. Imaging of human brain creatine kinase activity in vivo. FASEB J. 1989 Dec;3(14):2660–2666. [PubMed]
  • Caravatti M, Perriard JC, Eppenberger HM. Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. Biosynthesis of creatine kinase subunits M and B. J Biol Chem. 1979 Feb 25;254(4):1388–1394. [PubMed]
  • Chabre M, Deterre P. Molecular mechanism of visual transduction. Eur J Biochem. 1989 Feb 1;179(2):255–266. [PubMed]
  • CHANCE B, WILLIAMS GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed]
  • Chance B, Leigh JS, Jr, Clark BJ, Maris J, Kent J, Nioka S, Smith D. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384–8388. [PMC free article] [PubMed]
  • Chance B, Leigh JS, Jr, Kent J, McCully K, Nioka S, Clark BJ, Maris JM, Graham T. Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9458–9462. [PMC free article] [PubMed]
  • Chandler WL, Fine JS, Emery M, Weaver D, Reichenbach D, Clayson KJ. Regional creatine kinase, adenylate kinase, and lactate dehydrogenase in normal canine brain. Stroke. 1988 Feb;19(2):251–255. [PubMed]
  • Chen LH, Babbitt PC, Vásquez JR, West BL, Kenyon GL. Cloning and expression of functional rabbit muscle creatine kinase in Escherichia coli. Addressing the problem of microheterogeneity. J Biol Chem. 1991 Jun 25;266(18):12053–12057. [PubMed]
  • Cheneval D, Carafoli E. Identification and primary structure of the cardiolipin-binding domain of mitochondrial creatine kinase. Eur J Biochem. 1988 Jan 15;171(1-2):1–9. [PubMed]
  • Chevli R, Fitch CD. beta-Guanidinopropionate and phosphorylated beta-guanidinopropionate as substrates for creatine kinase. Biochem Med. 1979 Apr;21(2):162–167. [PubMed]
  • Chida K, Tsunenaga M, Kasahara K, Kohno Y, Kuroki T. Regulation of creatine phosphokinase B activity by protein kinase C. Biochem Biophys Res Commun. 1990 Nov 30;173(1):346–350. [PubMed]
  • Chida K, Kasahara K, Tsunenaga M, Kohno Y, Yamada S, Ohmi S, Kuroki T. Purification and identification of creatine phosphokinase B as a substrate of protein kinase C in mouse skin in vivo. Biochem Biophys Res Commun. 1990 Nov 30;173(1):351–357. [PubMed]
  • Christen R, Schackmann RW, Dahlquist FW, Shapiro BM. 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res. 1983 Nov;149(1):289–294. [PubMed]
  • Colombini M. A candidate for the permeability pathway of the outer mitochondrial membrane. Nature. 1979 Jun 14;279(5714):643–645. [PubMed]
  • Connett RJ. Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol. 1988 Jun;254(6 Pt 2):R949–R959. [PubMed]
  • Cooper J, Trinick J. Binding and location of AMP deaminase in rabbit psoas muscle myofibrils. J Mol Biol. 1984 Jul 25;177(1):137–152. [PubMed]
  • Dillon PF, Clark JF. The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase. J Theor Biol. 1990 Mar 22;143(2):275–284. [PubMed]
  • Doorey AJ, Barry WH. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells. Circ Res. 1983 Aug;53(2):192–201. [PubMed]
  • Dunant Y, Loctin F, Marsal J, Muller D, Parducz A, Rabasseda X. Energy metabolism and quantal acetylcholine release: effects of botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in the Torpedo electric organ. J Neurochem. 1988 Feb;50(2):431–439. [PubMed]
  • Eggleton P, Eggleton GP. Further observations on phosphagen. J Physiol. 1928 Mar 30;65(1):15–24. [PMC free article] [PubMed]
  • Ellington WR. Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol. 1989 May;143:177–194. [PubMed]
  • Eppenberger HM, Dawson DM, Kaplan NO. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem. 1967 Jan 25;242(2):204–209. [PubMed]
  • Eppenberger HM, Perriard JC, Wallimann T. Analysis of creatine kinase isozymes during muscle differentiation. Isozymes Curr Top Biol Med Res. 1983;7:19–38. [PubMed]
  • Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Müller M, Eppenberger HM, Wallimann T. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol. 1991 Apr;113(2):289–302. [PMC free article] [PubMed]
  • Erickson-Viitanen S, Viitanen P, Geiger PJ, Yang WC, Bessman SP. Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors. J Biol Chem. 1982 Dec 10;257(23):14395–14404. [PubMed]
  • Erickson-Viitanen S, Geiger PJ, Viitanen P, Bessman SP. Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation. J Biol Chem. 1982 Dec 10;257(23):14405–14411. [PubMed]
  • Ferris CD, Huganir RL, Snyder SH. Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2147–2151. [PMC free article] [PubMed]
  • Fischer W, Pfitzer G. Rapid myosin phosphorylation transients in phasic contractions in chicken gizzard smooth muscle. FEBS Lett. 1989 Nov 20;258(1):59–62. [PubMed]
  • Fitch CD, Shields RP, Payne WF, Dacus JM. Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J Biol Chem. 1968 Apr 25;243(8):2024–2027. [PubMed]
  • Fitch CD, Jellinek M, Mueller EJ. Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem. 1974 Feb 25;249(4):1060–1063. [PubMed]
  • Font B, Vial C, Goldschmidt D, Eichenberger D, Gautheron DC. Heart mitochondrial creatine kinase solubilization. Effect of mitochondrial swelling and SH group reagents. Arch Biochem Biophys. 1981 Nov;212(1):195–203. [PubMed]
  • Font B, Eichenberger D, Goldschmidt D, Vial C. Interaction of creatine kinase and hexokinase with the mitochondrial membranes, and self-association of creatine kinase: crosslinking studies. Mol Cell Biochem. 1987 Dec;78(2):131–140. [PubMed]
  • Friedhoff AJ, Lerner MH. Creatine kinase isoenzyme associated with synaptosomal membrane and synaptic vesicles. Life Sci. 1977 Mar 1;20(5):867–873. [PubMed]
  • From AH, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstad VK, Thoma WJ, Uğurbil K. Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry. 1990 Apr 17;29(15):3731–3743. [PubMed]
  • Gellerich F, Saks VA. Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1473–1481. [PubMed]
  • Gellerich FN, Schlame M, Bohnensack R, Kunz W. Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta. 1987 Feb 11;890(2):117–126. [PubMed]
  • Gerbitz KD, Deufel T, Summer J, Thallemer J, Wieland OH. Brain specific proteins: creatine kinase BB isoenzyme is cochromatographed during preparation of neuron-specific enolase from human brain. Clin Chim Acta. 1983 Sep 30;133(2):233–239. [PubMed]
  • Gercken G, Schlette U. Metabolite status of the heart in acute insufficiency due to 1-fluoro-2,4-dinitrobenzene. Experientia. 1968 Jan 15;24(1):17–19. [PubMed]
  • Giraudat J, Devillers-Thiery A, Perriard JC, Changeux JP. Complete nucleotide sequence of Torpedo marmorata mRNA coding for the 43,000-dalton nu 2 protein: muscle-specific creatine kinase. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7313–7317. [PMC free article] [PubMed]
  • Grosse R, Spitzer E, Kupriyanov VV, Saks VA, Repke KR. Coordinate interplay between (Na+ + K+)-ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim Biophys Acta. 1980 Dec 2;603(1):142–156. [PubMed]
  • Gudbjarnason S, Mathes P, Ravens KG. Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol. 1970 Sep;1(3):325–339. [PubMed]
  • Gysin R, Yost B, Flanagan SD. Creatine kinase isoenzymes in Torpedo californica: absence of the major brain isoenzyme from nicotinic acetylcholine receptor membranes. Biochemistry. 1986 Mar 25;25(6):1271–1278. [PubMed]
  • Gyulai L, Roth Z, Leigh JS, Jr, Chance B. Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR. J Biol Chem. 1985 Apr 10;260(7):3947–3954. [PubMed]
  • Haas RC, Strauss AW. Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem. 1990 Apr 25;265(12):6921–6927. [PubMed]
  • Haas RC, Korenfeld C, Zhang ZF, Perryman B, Roman D, Strauss AW. Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem. 1989 Feb 15;264(5):2890–2897. [PubMed]
  • Hall N, DeLuca M. Developmental changes in creatine phosphokinase isoenzymes in neonatal mouse hearts. Biochem Biophys Res Commun. 1975 Oct 6;66(3):988–994. [PubMed]
  • Hall N, DeLuca M. Electrophoretic separation and quantitation of creatine kinase isozymes. Anal Biochem. 1976 Dec;76(2):561–567. [PubMed]
  • Hall N, Deluca M. Binding of creatine kinase to heart and liver mitochondria in vitro. Arch Biochem Biophys. 1980 May;201(2):674–677. [PubMed]
  • Hamada M, Kuby SA. Studies on adenosine triphosphate transphosphorylases. XIII. Kinetic properties of the crystalline rabbit muscle ATP-AMP transphorphorylase (adenylate kinase) and a comparison with the crystalline calf muscle and liver adenylate kinases. Arch Biochem Biophys. 1978 Oct;190(2):772–779. [PubMed]
  • Hamburg RJ, Friedman DL, Olson EN, Ma TS, Cortez MD, Goodman C, Puleo PR, Perryman MB. Muscle creatine kinase isoenzyme expression in adult human brain. J Biol Chem. 1990 Apr 15;265(11):6403–6409. [PubMed]
  • Hebisch S, Sies H, Soboll S. Function dependent changes in the subcellular distribution of high energy phosphates in fast and slow rat skeletal muscles. Pflugers Arch. 1986 Jan;406(1):20–24. [PubMed]
  • Hellstrand P, Vogel HJ. Phosphagens and intracellular pH in intact rabbit smooth muscle studied by 31P-NMR. Am J Physiol. 1985 Mar;248(3 Pt 1):C320–C329. [PubMed]
  • Hochachka PW, Mommsen TP. Protons and anaerobiosis. Science. 1983 Mar 25;219(4591):1391–1397. [PubMed]
  • Hoerter JA, Lauer C, Vassort G, Guéron M. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Am J Physiol. 1988 Aug;255(2 Pt 1):C192–C201. [PubMed]
  • Hoerter JA, Kuznetsov A, Ventura-Clapier R. Functional development of the creatine kinase system in perinatal rabbit heart. Circ Res. 1991 Sep;69(3):665–676. [PubMed]
  • Holtzman D, Herman MM, Desautel M, Lewiston N. Effects of altered osmolality on respiration and morphology of mitochondria from the developing brain. J Neurochem. 1979 Aug;33(2):453–460. [PubMed]
  • Holtzman D, McFarland E, Moerland T, Koutcher J, Kushmerick MJ, Neuringer LJ. Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine. Brain Res. 1989 Mar 27;483(1):68–77. [PubMed]
  • Holtzman D, McFarland EW, Jacobs D, Offutt MC, Neuringer LJ. Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance. Brain Res Dev Brain Res. 1991 Feb 22;58(2):181–188. [PubMed]
  • Hossle JP, Schlegel J, Wegmann G, Wyss M, Böhlen P, Eppenberger HM, Wallimann T, Perriard JC. Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun. 1988 Feb 29;151(1):408–416. [PubMed]
  • Hovius R, Lambrechts H, Nicolay K, de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990 Jan 29;1021(2):217–226. [PubMed]
  • Hutson SM, Berkich D, Williams GD, LaNoue KF, Briggs RW. 31P NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides. Biochemistry. 1989 May 16;28(10):4325–4332. [PubMed]
  • Ikeda K. Localization of brain type creatine kinase in kidney epithelial cell subpopulations in rat. Experientia. 1988 Sep 15;44(9):734–735. [PubMed]
  • Ikeda K, Tomonaga M. The presence of creatine kinase (CK)-immunoreactive neurons in the zona incerta and lateral hypothalamic area of the mouse brain. Brain Res. 1987 Dec 1;435(1-2):348–350. [PubMed]
  • Ikeda K, Tomonaga M. Creatine kinase immunoreactivity: localization in nerve terminals in the hypothalamic area and superior colliculus of the mouse brain. Neurosci Lett. 1988 Feb 15;85(1):51–55. [PubMed]
  • Infante AA, Davies RE. The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle. J Biol Chem. 1965 Oct;240(10):3996–4001. [PubMed]
  • Ingwall JS, Atkinson DE, Clarke K, Fetters JK. Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J. 1990 Apr;11 (Suppl B):108–115. [PubMed]
  • Ishida Y, Paul RJ. Evidence for compartmentation of high energy phosphagens in smooth muscle. Prog Clin Biol Res. 1989;315:417–428. [PubMed]
  • Ishida Y, Paul RJ. Effects of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci. J Physiol. 1990 May;424:41–56. [PMC free article] [PubMed]
  • Ishida Y, Wyss M, Hemmer W, Wallimann T. Identification of creatine kinase isoenzymes in the guinea-pig. Presence of mitochondrial creatine kinase in smooth muscle. FEBS Lett. 1991 May 20;283(1):37–43. [PubMed]
  • Iyengar MR. Creatine kinase as an intracellular regulator. J Muscle Res Cell Motil. 1984 Oct;5(5):527–534. [PubMed]
  • Iyengar MR, Fluellen CE, Iyengar C. Creatine kinase from the bovine myometrium: purification and characterization. J Muscle Res Cell Motil. 1982 Jun;3(2):231–246. [PubMed]
  • Jacobs H, Heldt HW, Klingenberg M. High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem Biophys Res Commun. 1964 Aug 11;16(6):516–521. [PubMed]
  • Jacobus WE. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol. 1985;47:707–725. [PubMed]
  • Jacobus WE. Theoretical support for the heart phosphocreatine energy transport shuttle based on the intracellular diffusion limited mobility of ADP. Biochem Biophys Res Commun. 1985 Dec 31;133(3):1035–1041. [PubMed]
  • Jacobus WE, Diffley DM. Creatine kinase of heart mitochondria. Control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine. J Biol Chem. 1986 Dec 15;261(35):16579–16583. [PubMed]
  • Jacobus WE, Lehninger AL. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem. 1973 Jul 10;248(13):4803–4810. [PubMed]
  • Jacobus WE, Moreadith RW, Vandegaer KM. Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes. Ann N Y Acad Sci. 1983;414:73–89. [PubMed]
  • James P, Wyss M, Lutsenko S, Wallimann T, Carafoli E. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP. FEBS Lett. 1990 Oct 29;273(1-2):139–143. [PubMed]
  • Jennings RB, Reimer KA, Hill ML, Mayer SE. Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res. 1981 Oct;49(4):892–900. [PubMed]
  • Jockers-Wretou E, Giebel W, Pfleiderer G. Immunohistochemische Lokalisierung der Isoenzyme der Creatinkinase im menschlichen Gewebe. Histochemistry. 1977 Oct 3;54(1):83–95. [PubMed]
  • Jones DP. Intracellular diffusion gradients of O2 and ATP. Am J Physiol. 1986 May;250(5 Pt 1):C663–C675. [PubMed]
  • Kammermeier H. Why do cells need phosphocreatine and a phosphocreatine shuttle. J Mol Cell Cardiol. 1987 Jan;19(1):115–118. [PubMed]
  • Kato K, Suzuki F, Shimizu A, Shinohara H, Semba R. Highly sensitive immunoassay for rat brain-type creatine kinase: determination in isolated Purkinje cells. J Neurochem. 1986 Jun;46(6):1783–1788. [PubMed]
  • Keller TC, 3rd, Gordon PV. Discrete subcellular localization of a cytoplasmic and a mitochondrial isozyme of creatine kinase in intestinal epithelial cells. Cell Motil Cytoskeleton. 1991;19(3):169–179. [PubMed]
  • Kenyon GL, Reed GH. Creatine kinase: structure-activity relationships. Adv Enzymol Relat Areas Mol Biol. 1983;54:367–426. [PubMed]
  • Khan MA. Effect of calcium on creatine kinase activity of cerebellum. Histochemistry. 1976 Jul 30;48(1):29–32. [PubMed]
  • Khan MA, Holt PG, Papadimitriou JM, Knight JO, Kakulas BA. Creatine kinase, a histochemical study by the gelatin film-lead precipitation technique. Histochemie. 1972;32(1):49–58. [PubMed]
  • Kartner N, Ling V. Multidrug resistance in cancer. Sci Am. 1989 Mar;260(3):44–51. [PubMed]
  • Klein SC, Haas RC, Perryman MB, Billadello JJ, Strauss AW. Regulatory element analysis and structural characterization of the human sarcomeric mitochondrial creatine kinase gene. J Biol Chem. 1991 Sep 25;266(27):18058–18065. [PubMed]
  • Klingenberg M. Muskelmitochondrien. Ergeb Physiol. 1964;55:131–189. [PubMed]
  • Klingenberg M. The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J Membr Biol. 1980 Sep 30;56(2):97–105. [PubMed]
  • Knoll G, Brdiczka D. Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes. Biochim Biophys Acta. 1983 Aug 24;733(1):102–110. [PubMed]
  • Koretsky AP, Traxler BA. The B isozyme of creatine kinase is active as a fusion protein in Escherichia coli: in vivo detection by 31P NMR. FEBS Lett. 1989 Jan 16;243(1):8–12. [PubMed]
  • Koretsky AP, Basus VJ, James TL, Klein MP, Weiner MW. Detection of exchange reactions involving small metabolite pools using NMR magnetization transfer techniques: relevance to subcellular compartmentation of creatine kinase. Magn Reson Med. 1985 Dec;2(6):586–594. [PubMed]
  • Koretsky AP, Wang S, Klein MP, James TL, Weiner MW. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ. Biochemistry. 1986 Jan 14;25(1):77–84. [PubMed]
  • Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3112–3116. [PMC free article] [PubMed]
  • Kottke M, Adam V, Riesinger I, Bremm G, Bosch W, Brdiczka D, Sandri G, Panfili E. Mitochondrial boundary membrane contact sites in brain: points of hexokinase and creatine kinase location, and control of Ca2+ transport. Biochim Biophys Acta. 1988 Aug 17;935(1):87–102. [PubMed]
  • Kottke M, Adams V, Wallimann T, Nalam VK, Brdiczka D. Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta. 1991 Jan 30;1061(2):215–225. [PubMed]
  • Krause J, Hay R, Kowollik C, Brdiczka D. Cross-linking analysis of yeast mitochondrial outer membrane. Biochim Biophys Acta. 1986 Sep 11;860(3):690–698. [PubMed]
  • Kupriyanov VV, Seppet EK, Emelin IV, Saks VA. Phosphocretine production coupled to the glycolytic reactions in the cytosol of cardiac cells. Biochim Biophys Acta. 1980 Sep 5;592(2):197–210. [PubMed]
  • Kupriyanov VV, Ya Steinschneider A, Ruuge EK, Kapel'ko VI, Yu Zueva M, Lakomkin VL, Smirnov VN, Saks VA. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta. 1984 Dec 11;805(4):319–331. [PubMed]
  • Kushmerick MJ, Davies RE. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Appendix. Free energy and enthalpy of atp hydrolysis in the sarcoplasm. Proc R Soc Lond B Biol Sci. 1969 Dec 23;174(1036):315–353. [PubMed]
  • Kuznetsov AV, Khuchua ZA, Vassil'eva EV, Medved'eva NV, Saks VA. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Arch Biochem Biophys. 1989 Jan;268(1):176–190. [PubMed]
  • Levin RM, Longhurst PA, Levin SS, Haugaard N, Wein AJ. Creatine kinase activity of urinary bladder and skeletal muscle from control and streptozotocin-diabetic rats. Mol Cell Biochem. 1990 Sep 21;97(2):153–159. [PubMed]
  • Levitskii DO, Levchenko TS, Saks VA, Sharov VG, Smirnov VN. Funktsional'noe sopriazhenie mezhdu Ca2+-ATPazoi i kreatinfosfokinazoi v sarkoplazmaticheskom retikulume serdechnoi myshtsy. Biokhimiia. 1977 Oct;42(10):1766–1773. [PubMed]
  • Levitsky DO, Levchenko TS, Saks VA, Sharov VG, Smirnov VN. The role of creatine phosphokinase in supplying energy for the calcium pump system of heart sarcoplasmic reticulum. Membr Biochem. 1978;2(1):81–96. [PubMed]
  • Lim L, Hall C, Leung T, Mahadevan L, Whatley S. Neurone-specific enolase and creatine phosphokinase are protein components of rat brain synaptic plasma membranes. J Neurochem. 1983 Oct;41(4):1177–1182. [PubMed]
  • Lindén M, Gellerfors P. Hydrodynamic properties of porin isolated from outer membranes of rat liver mitochondria. Biochim Biophys Acta. 1983 Dec 7;736(1):125–129. [PubMed]
  • Lindsey GG, Diamond EM. Evidence for significant quantities of creatine kinase MM isoenzyme in human brain. Biochim Biophys Acta. 1978 May 11;524(1):78–84. [PubMed]
  • Lipskaya TYu, Trofimova ME. Study on heart mitochondrial creatine kinase using a cross-linking bifunctional reagent. I. The binding involves the octameric form of the enzyme. Biochem Int. 1989 May;18(5):1029–1039. [PubMed]
  • Lipskaya TYu, Trofimova ME. Study on heart mitochondrial creatine kinase using a cross-linking bifunctional reagent. II. The binding sites for the creatine kinase octamer on mitochondrial membranes have different properties. Biochem Int. 1989 Jun;18(6):1149–1159. [PubMed]
  • LOWRY OH, ROBERTS NR, SCHULZ DW, CLOW JE, CLARK JR. Quantitative histochemistry of retina. II. Enzymes of glucose metabolism. J Biol Chem. 1961 Oct;236:2813–2820. [PubMed]
  • Luther P, Squire J. Three-dimensional structure of the vertebrate muscle M-region. J Mol Biol. 1978 Nov 5;125(3):313–324. [PubMed]
  • Mahadevan LC, Whatley SA, Leung TK, Lim L. The brain isoform of a key ATP-regulating enzyme, creatine kinase, is a phosphoprotein. Biochem J. 1984 Aug 15;222(1):139–144. [PMC free article] [PubMed]
  • Mahler M. First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. J Gen Physiol. 1985 Jul;86(1):135–165. [PMC free article] [PubMed]
  • Mainwood GW, Rakusan K. A model for intracellular energy transport. Can J Physiol Pharmacol. 1982 Jan;60(1):98–102. [PubMed]
  • Maker HS, Lehrer GM, Silides DJ, Weiss C. Regional changes in cerebellar creatine phosphate metabolism during late maturation. Exp Neurol. 1973 Feb;38(2):295–300. [PubMed]
  • Manos P, Bryan GK, Edmond J. Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes, and oligodendrocytes. J Neurochem. 1991 Jun;56(6):2101–2107. [PubMed]
  • Marcillat O, Goldschmidt D, Eichenberger D, Vial C. Only one of the two interconvertible forms of mitochondrial creatine kinase binds to heart mitoplasts. Biochim Biophys Acta. 1987 Feb 11;890(2):233–241. [PubMed]
  • Matthews PM, Bland JL, Gadian DG, Radda GK. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochim Biophys Acta. 1982 Nov 17;721(3):312–320. [PubMed]
  • Maughan D, Wegner E. On the organization and diffusion of glycolytic enzymes in skeletal muscle. Prog Clin Biol Res. 1989;315:137–147. [PubMed]
  • McAuliffe JJ, Perry SB, Brooks EE, Ingwall JS. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart? Prog Clin Biol Res. 1989;315:581–592. [PubMed]
  • McAuliffe JJ, Perry SB, Brooks EE, Ingwall JS. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation. Biochemistry. 1991 Mar 12;30(10):2585–2593. [PubMed]
  • McClellan G, Weisberg A, Winegrad S. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol. 1983 Nov;245(5 Pt 1):C423–C427. [PubMed]
  • McGilvery RW, Murray TW. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J Biol Chem. 1974 Sep 25;249(18):5845–5850. [PubMed]
  • Meyer RA. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 1988 Apr;254(4 Pt 1):C548–C553. [PubMed]
  • Meyer RA, Sweeney HL, Kushmerick MJ. A simple analysis of the "phosphocreatine shuttle". Am J Physiol. 1984 May;246(5 Pt 1):C365–C377. [PubMed]
  • Meyer RA, Brown TR, Kushmerick MJ. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C279–C287. [PubMed]
  • Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol. 1986 Feb;250(2 Pt 1):C264–C274. [PubMed]
  • Miller DS, Horowitz SB. Intracellular compartmentalization of adenosine triphosphate. J Biol Chem. 1986 Oct 25;261(30):13911–13915. [PubMed]
  • Milner-White EJ, Watts DC. Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. Biochem J. 1971 May;122(5):727–740. [PMC free article] [PubMed]
  • Möller A, Hamprecht B. Creatine transport in cultured cells of rat and mouse brain. J Neurochem. 1989 Feb;52(2):544–550. [PubMed]
  • Mommaerts WF. Energetics of muscular contraction. Physiol Rev. 1969 Jul;49(3):427–508. [PubMed]
  • Mommaerts WF, Wallner A. The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. J Physiol. 1967 Nov;193(2):343–357. [PMC free article] [PubMed]
  • Moonen CT, van Zijl PC, Frank JA, Le Bihan D, Becker ED. Functional magnetic resonance imaging in medicine and physiology. Science. 1990 Oct 5;250(4977):53–61. [PubMed]
  • Moreadith RW, Jacobus WE. Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase. J Biol Chem. 1982 Jan 25;257(2):899–905. [PubMed]
  • Müller M, Moser R, Cheneval D, Carafoli E. Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem. 1985 Mar 25;260(6):3839–3843. [PubMed]
  • Murphy E, Gabel SA, Funk A, London RE. NMR observability of ATP: preferential depletion of cytosolic ATP during ischemia in perfused rat liver. Biochemistry. 1988 Jan 26;27(2):526–528. [PubMed]
  • Nägle S. Die Bedeutung von Kreatinphosphat und Adenosintriphosphat im Hinblick auf Energiebereitstellung, -transport und -verwertung im normalen und insuffizienten Herzmuskel. Klin Wochenschr. 1970 Mar 15;48(6):332–341. [PubMed]
  • Newsholme EA, Beis I, Leech AR, Zammit VA. The role of creatine kinase and arginine kinase in muscle. Biochem J. 1978 Jun 15;172(3):533–537. [PMC free article] [PubMed]
  • Nicolay K, Rojo M, Wallimann T, Demel R, Hovius R. The role of contact sites between inner and outer mitochondrial membrane in energy transfer. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):229–233. [PubMed]
  • Norwood WI, Ingwall JS, Norwood CR, Fossel ET. Developmental changes of creatine kinase metabolism in rat brain. Am J Physiol. 1983 Mar;244(3):C205–C210. [PubMed]
  • Nunnally RL, Hollis DP. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry. 1979 Aug 7;18(16):3642–3646. [PubMed]
  • Oblinger MM, Brady ST, McQuarrie IG, Lasek RJ. Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurosci. 1987 Feb;7(2):453–462. [PubMed]
  • Ogawa S, Lee TM. Proton stoichiometry of adenosine 5'-triphosphate synthesis in rat liver mitochondria studied by phosphorus-31 nuclear magnetic resonance. Biochemistry. 1982 Aug 31;21(18):4467–4473. [PubMed]
  • Otsu N, Hirata M, Tuboi S, Miyazawa K. Immunocytochemical localization of creatine kinase M in canine myocardial cells: most creatine kinase M is distributed in the A-band. J Histochem Cytochem. 1989 Oct;37(10):1465–1470. [PubMed]
  • Payne RM, Haas RC, Strauss AW. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta. 1991 Jul 23;1089(3):352–361. [PubMed]
  • Perriard JC, Caravatti M, Perriard ER, Eppenberger HM. Quantitation of creatine kinase isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption. Arch Biochem Biophys. 1978 Nov;191(1):90–100. [PubMed]
  • Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochemistry. 1988 Mar 22;27(6):2165–2172. [PubMed]
  • Perryman MB, Strauss AW, Olson J, Roberts R. In vitro translation of canine mitochondrial creatine kinase messenger RNA. Biochem Biophys Res Commun. 1983 Feb 10;110(3):967–972. [PubMed]
  • Perryman MB, Knell JD, Ifegwu J, Roberts R. Identification of a 43-kDa polypeptide associated with acetylcholine receptor-enriched membranes as MM creatine kinase. J Biol Chem. 1985 Aug 5;260(16):9399–9404. [PubMed]
  • Quemeneur E, Eichenberger D, Goldschmidt D, Vial C, Beauregard G, Potier M. The radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1310–1314. [PubMed]
  • Quest AF, Shapiro BM. Membrane association of flagellar creatine kinase in the sperm phosphocreatine shuttle. J Biol Chem. 1991 Oct 15;266(29):19803–19811. [PubMed]
  • Quest AF, Eppenberger HM, Wallimann T. Purification of brain-type creatine kinase (B-CK) from several tissues of the chicken: B-CK subspecies. Enzyme. 1989;41(1):33–42. [PubMed]
  • Quest AF, Eppenberger HM, Wallimann T. Two different B-type creatine kinase subunits dimerize in a tissue-specific manner. FEBS Lett. 1990 Mar 26;262(2):299–304. [PubMed]
  • Quest AF, Soldati T, Hemmer W, Perriard JC, Eppenberger HM, Wallimann T. Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Lett. 1990 Sep 3;269(2):457–464. [PubMed]
  • Reiss NA, Kaye AM. Identification of the major component of the estrogen-induced protein of rat uterus as the BB isozyme of creatine kinase. J Biol Chem. 1981 Jun 10;256(11):5741–5749. [PubMed]
  • Rojo M, Hovius R, Demel R, Wallimann T, Eppenberger HM, Nicolay K. Interaction of mitochondrial creatine kinase with model membranes. A monolayer study. FEBS Lett. 1991 Apr 9;281(1-2):123–129. [PubMed]
  • Rojo M, Hovius R, Demel RA, Nicolay K, Wallimann T. Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem. 1991 Oct 25;266(30):20290–20295. [PubMed]
  • Roos N, Benz R, Brdiczka D. Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria. Biochim Biophys Acta. 1982 Apr 7;686(2):204–214. [PubMed]
  • Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T. Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem. 1990 Mar 25;265(9):5258–5266. [PubMed]
  • Saks VA, Chernousova GB, Vetter R, Smirnov VN, Chazov EI. Kinetic properties and the functional role of particulate MM-isoenzyme of creatine phosphokinase bound to heart muscle myofibrils. FEBS Lett. 1976 Mar 1;62(3):293–296. [PubMed]
  • Saks VA, Lipina NV, Smirnov VN, Chazov EI. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP ADP translocase: kinetic evidence. Arch Biochem Biophys. 1976 Mar;173(1):34–41. [PubMed]
  • Saks VA, Lipina NV, Sharov VG, Smirnov VN, Chazov E, Grosse R. The localization of the MM isozyme of creatine phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na+, K+)-ATPase. Biochim Biophys Acta. 1977 Mar 17;465(3):550–558. [PubMed]
  • Saks VA, Rosenshtraukh LV, Smirnov VN, Chazov EI. Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol. 1978 Oct;56(5):691–706. [PubMed]
  • Saks VA, Kupriyanov VV, Elizarova GV, Jacobus WE. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J Biol Chem. 1980 Jan 25;255(2):755–763. [PubMed]
  • Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta. 1984 Apr 16;803(4):254–264. [PubMed]
  • Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE. Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem. 1985 Jun 25;260(12):7757–7764. [PubMed]
  • Saks VA, Khuchua ZA, Kuznetsov AV, Veksler VI, Sharov VG. Heart mitochondria in physiological salt solution: not ionic strength but salt composition is important for association of creatine kinase with the inner membrane surface. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1262–1271. [PubMed]
  • Savabi F. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7476–7480. [PMC free article] [PubMed]
  • Savabi F, Geiger PJ, Bessman SP. Myofibrillar end of the creatine phosphate energy shuttle. Am J Physiol. 1984 Nov;247(5 Pt 1):C424–C432. [PubMed]
  • Schäfer BW, Perriard JC. Intracellular targeting of isoproteins in muscle cytoarchitecture. J Cell Biol. 1988 Apr;106(4):1161–1170. [PMC free article] [PubMed]
  • Schlame M, Augustin W. Association of creatine kinase with rat heart mitochondria: high and low affinity binding sites and the involvement of phospholipids. Biomed Biochim Acta. 1985;44(7-8):1083–1088. [PubMed]
  • Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T. Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. J Biol Chem. 1988 Nov 15;263(32):16942–16953. [PubMed]
  • Schlegel J, Wyss M, Schürch U, Schnyder T, Quest A, Wegmann G, Eppenberger HM, Wallimann T. Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. J Biol Chem. 1988 Nov 15;263(32):16963–16969. [PubMed]
  • Schlegel J, Wyss M, Eppenberger HM, Wallimann T. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem. 1990 Jun 5;265(16):9221–9227. [PubMed]
  • Schmitt T, Pette D. Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle. FEBS Lett. 1985 Sep 2;188(2):341–344. [PubMed]
  • Schnyder T, Engel A, Lustig A, Wallimann T. Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. J Biol Chem. 1988 Nov 15;263(32):16954–16962. [PubMed]
  • Schnyder T, Sargent DF, Richmond TJ, Eppenberger HM, Wallimann T. Crystallization and preliminary X-ray analysis of two different forms of mitochondrial creatine kinase from chicken cardiac muscle. J Mol Biol. 1990 Dec 20;216(4):809–812. [PubMed]
  • Schnyder T, Gross H, Winkler H, Eppenberger HM, Wallimann T. Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol. 1991 Jan;112(1):95–101. [PMC free article] [PubMed]
  • Schnyder T, Winkler H, Gross H, Eppenberger HM, Wallimann T. Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem. 1991 Mar 15;266(8):5318–5322. [PubMed]
  • Scholte HR. On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes. Biochim Biophys Acta. 1973 May 30;305(2):413–427. [PubMed]
  • Scholte HR, Weijers PJ, Wit-Peeters EM. The localization of mitochondrial creatine kinase, and its use for the determination of the sidedness of submitochondrial particles. Biochim Biophys Acta. 1973 Feb 16;291(3):764–773. [PubMed]
  • Scopes RK. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis. Biochem J. 1973 May;134(1):197–208. [PMC free article] [PubMed]
  • Seraydarian MW, Abbott BC. The role of the creatine--phosphorylcreatine system in muscle. J Mol Cell Cardiol. 1976 Oct;8(10):741–746. [PubMed]
  • Sharov VG, Saks VA, Smirnov VN, Chazov EI. An electron microscopic histochemical investigation of the localization of creatine phosphokinase in heart cells. Biochim Biophys Acta. 1977 Aug 1;468(3):495–501. [PubMed]
  • Shoubridge EA, Radda GK. A 31P-nuclear magnetic resonance study of skeletal muscle metabolism in rats depleted of creatine with the analogue beta-guanidinopropionic acid. Biochim Biophys Acta. 1984 Sep 14;805(1):79–88. [PubMed]
  • Shoubridge EA, Jeffry FM, Keogh JM, Radda GK, Seymour AM. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochim Biophys Acta. 1985 Oct 30;847(1):25–32. [PubMed]
  • Shoubridge EA, Challiss RA, Hayes DJ, Radda GK. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochem J. 1985 Nov 15;232(1):125–131. [PMC free article] [PubMed]
  • Soboll S, Scholz R, Heldt HW. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Eur J Biochem. 1978 Jun 15;87(2):377–390. [PubMed]
  • Soldati T, Schäfer BW, Perriard JC. Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini. J Biol Chem. 1990 Mar 15;265(8):4498–4506. [PubMed]
  • Spande JI, Schottelius BA. Chemical basis of fatigue in isolated mouse soleus muscle. Am J Physiol. 1970 Nov;219(5):1490–1495. [PubMed]
  • Srere PA. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. [PubMed]
  • Srivastava DK, Bernhard SA. Metabolite transfer via enzyme-enzyme complexes. Science. 1986 Nov 28;234(4780):1081–1086. [PubMed]
  • Srivastava DK, Bernhard SA. Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Annu Rev Biophys Biophys Chem. 1987;16:175–204. [PubMed]
  • Strehler EE, Carlsson E, Eppenberger HM, Thornell LE. Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immunocytochemistry and ultramicrotomy. J Mol Biol. 1983 May 15;166(2):141–158. [PubMed]
  • Swanson PD. The particulate adenosine triphosphate-creatine phosphotransferase from brain: its distribution in subcellular fractions and its properties. J Neurochem. 1967 Mar;14(3):343–356. [PubMed]
  • Thelen M, Rosen A, Nairn AC, Aderem A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature. 1991 May 23;351(6324):320–322. [PubMed]
  • Thompson RJ, Kynoch PA, Sarjant J. Immunohistochemical localization of creatine kinase-BB isoenzyme to astrocytes in human brain. Brain Res. 1980 Nov 17;201(2):423–426. [PubMed]
  • Thulborn KR, du Boulay GH, Duchen LW, Radda G. A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J Cereb Blood Flow Metab. 1982 Sep;2(3):299–306. [PubMed]
  • Tofts P, Wray S. Changes in brain phosphorus metabolites during the post-natal development of the rat. J Physiol. 1985 Feb;359:417–429. [PMC free article] [PubMed]
  • Tombes RM, Shapiro BM. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985 May;41(1):325–334. [PubMed]
  • Tombes RM, Shapiro BM. Enzyme termini of a phosphocreatine shuttle. Purification and characterization of two creatine kinase isozymes from sea urchin sperm. J Biol Chem. 1987 Nov 25;262(33):16011–16019. [PubMed]
  • Tombes RM, Brokaw CJ, Shapiro BM. Creatine kinase-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J. 1987 Jul;52(1):75–86. [PMC free article] [PubMed]
  • Tombes RM, Farr A, Shapiro BM. Sea urchin sperm creatine kinase: the flagellar isozyme is a microtubule-associated protein. Exp Cell Res. 1988 Oct;178(2):307–317. [PubMed]
  • Toyo-oka T, Nagayama K, Umeda M, Eguchi K, Hosoda S. Rhythmic change of myocardial phosphate metabolite content in cardiac cycle observed by depth-selected and EKG-gated in vivo 31P-NMR spectroscopy in a whole animal. Biochem Biophys Res Commun. 1986 Mar 28;135(3):808–815. [PubMed]
  • Trask RV, Strauss AW, Billadello JJ. Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J Biol Chem. 1988 Nov 15;263(32):17142–17149. [PubMed]
  • Turner DC, Wallimann T, Eppenberger HM. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci U S A. 1973 Mar;70(3):702–705. [PMC free article] [PubMed]
  • Ugurbil K, Holmsen H, Shulman RG. Adenine nucleotide storage and secretion in platelets as studied by 31P nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1979 May;76(5):2227–2231. [PMC free article] [PubMed]
  • Uğurbil K, Petein M, Maidan R, Michurski S, From AH. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry. 1986 Jan 14;25(1):100–107. [PubMed]
  • Uyeda K, Racker E. Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase. J Biol Chem. 1965 Dec;240(12):4682–4688. [PubMed]
  • Van Waarde A, Van den Thillart G, Erkelens C, Addink A, Lugtenburg J. Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. An in vivo 31P NMR study. J Biol Chem. 1990 Jan 15;265(2):914–923. [PubMed]
  • Veech RL, Lawson JW, Cornell NW, Krebs HA. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed]
  • Ventura-Clapier R, Mekhfi H, Vassort G. Role of creatine kinase in force development in chemically skinned rat cardiac muscle. J Gen Physiol. 1987 May;89(5):815–837. [PMC free article] [PubMed]
  • Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV. Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Physiol. 1987 Sep;253(3 Pt 1):C444–C455. [PubMed]
  • Vial C, Font B, Goldschmidt D, Gautheron DC. Dissociation and reassociation of creatine kinase with heart mitochondria; pH and phosphate dependence. Biochem Biophys Res Commun. 1979 Jun 27;88(4):1352–1359. [PubMed]
  • Wallimann T, Eppenberger HM. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle. Cell Muscle Motil. 1985;6:239–285. [PubMed]
  • Wallimann T, Eppenberger HM. The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit. Prog Clin Biol Res. 1990;344:877–889. [PubMed]
  • Wallimann T, Turner DC, Eppenberger HM. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):297–317. [PMC free article] [PubMed]
  • Wallimann T, Pelloni G, Turner DC, Eppenberger HM. Monovalent antibodies against MM-creatine kinase remove the M line from myofibrils. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4296–4300. [PMC free article] [PubMed]
  • Wallimann T, Moser H, Eppenberger HM. Isoenzyme-specific localization of M-line bound creatine kinase in myogenic cells. J Muscle Res Cell Motil. 1983 Aug;4(4):429–441. [PubMed]
  • Wallimann T, Doetschman TC, Eppenberger HM. Novel staining pattern of skeletal muscle M-lines upon incubation with antibodies against MM-creatine kinase. J Cell Biol. 1983 Jun;96(6):1772–1779. [PMC free article] [PubMed]
  • Wallimann T, Schlösser T, Eppenberger HM. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem. 1984 Apr 25;259(8):5238–5246. [PubMed]
  • Wallimann T, Walzthöny D, Wegmann G, Moser H, Eppenberger HM, Barrantes FJ. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes. J Cell Biol. 1985 Apr;100(4):1063–1072. [PMC free article] [PubMed]
  • Wallimann T, Wegmann G, Moser H, Huber R, Eppenberger HM. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3816–3819. [PMC free article] [PubMed]
  • Wallimann T, Moser H, Zurbriggen B, Wegmann G, Eppenberger HM. Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil. 1986 Feb;7(1):25–34. [PubMed]
  • Wallimann T, Schnyder T, Schlegel J, Wyss M, Wegmann G, Rossi AM, Hemmer W, Eppenberger HM, Quest AF. Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. Prog Clin Biol Res. 1989;315:159–176. [PubMed]
  • Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T. Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation. 1991 Mar;46(2):77–87. [PubMed]
  • West BL, Babbitt PC, Mendez B, Baxter JD. Creatine kinase protein sequence encoded by a cDNA made from Torpedo californica electric organ mRNA. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7007–7011. [PMC free article] [PubMed]
  • West JJ, Nagy B, Gergely J. Free adenosine diphosphate as an intermediary in the phosphorylation by creatine phosphate of adenosine diphosphate bound to actin. J Biol Chem. 1967 Mar 25;242(6):1140–1145. [PubMed]
  • Wevers RA, Reutelingsperger CP, Dam B, Soons JB. Mitochondrial creatine kinase (EC 2.7.3.2) in the brain. Clin Chim Acta. 1982 Mar 12;119(3):209–223. [PubMed]
  • Winegrad S, Weisberg A, Lin LE, McClellan G. A calcium independent on-off switch for cardiac force generators. Prog Clin Biol Res. 1989;315:473–479. [PubMed]
  • Winkler H, Gross H, Schnyder T, Kunath W. Circular harmonic averaging of rotary-shadowed and negatively stained creatine kinase macromolecules. J Electron Microsc Tech. 1991 Jun;18(2):135–141. [PubMed]
  • Wirz T, Brändle U, Soldati T, Hossle JP, Perriard JC. A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct N termini by alternative splicing. J Biol Chem. 1990 Jul 15;265(20):11656–11666. [PubMed]
  • Witzemann V. Creatine phosphokinase: isoenzymes in Torpedo marmorata. Eur J Biochem. 1985 Jul 1;150(1):201–210. [PubMed]
  • Wothe DD, Charbonneau H, Shapiro BM. The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5203–5207. [PMC free article] [PubMed]
  • Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T. Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem. 1990 Sep 15;265(26):15900–15908. [PubMed]
  • Yamada T, Sugi H. Regulation of glycogenolysis in contracting frog skeletal muscle studied by 31P nuclear magnetic resonance. Prog Clin Biol Res. 1989;315:149–157. [PubMed]
  • Yamashita K, Yoshioka T. Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J Muscle Res Cell Motil. 1991 Feb;12(1):37–44. [PubMed]
  • Yang WC, Geiger PJ, Besman SP. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria. Biochem Biophys Res Commun. 1977 Jun 6;76(3):882–887. [PubMed]
  • Yoshimine T, Morimoto K, Homburger HA, Yanagihara T. Immunohistochemical localization of creatine kinase BB-isoenzyme in human brain: comparison with tubulin and astroprotein. Brain Res. 1983 Apr 11;265(1):101–108. [PubMed]
  • Yoshizaki K, Watari H, Radda GK. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta. 1990 Feb 19;1051(2):144–150. [PubMed]
  • Zahler R, Bittl JA, Ingwall JS. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J. 1987 Jun;51(6):883–893. [PMC free article] [PubMed]
  • Zweier JL, Jacobus WE, Korecky B, Brandejs-Barry Y. Bioenergetic consequences of cardiac phosphocreatine depletion induced by creatine analogue feeding. J Biol Chem. 1991 Oct 25;266(30):20296–20304. [PubMed]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

  • Compound
    Compound
    PubChem Compound links
  • PubMed
    PubMed
    PubMed citations for these articles
  • Substance
    Substance
    PubChem Substance links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...