Logo of plntphysLink to Publisher's site
Plant Physiol. 1978 Aug; 62(2): 191–196.
PMCID: PMC1092088

Effect of Growth Temperature on Chloroplast Structure and Activity in Barley


Seedlings of barley (Hordeum vulgare L. cv. Abyssinian) were grown at constant temperature and light intensity and the properties and structure of chloroplasts in the primary leaf were examined. Seventeen growth temperatures ranging from 2 to 37 C were employed. Three major effects of the growth temperature were seen. (a) At very low and high growth temperatures chloroplast biogenesis was inhibited. This occurred in plants grown at temperatures above 32 C while growth at 2 C resulted in a mixed population of pale yellow, pale green, and green plants. (b) Chloroplasts were produced at all other temperatures tested but growth temperatures within a few degrees of those inhibitory to chloroplast development resulted in chloroplasts with abnormal properties and structure. Chloroplasts in the green plants grown at 2 and 5 C showed a number of structural peculiarities, including a characteristic crimping of granal thylakoids. Photoreductive activity, measured using ferricyanide as the Hill oxidant in the presence of gramicidin D, was high, but this activity in chloroplasts isolated from plants grown at 2 C showed thermal inactivation at temperatures 5 degrees lower than was the case with plants grown at higher temperatures. High growth temperatures (30 to 32 C) yielded chloroplasts with reduced photoreductive activity and a tendency toward the formation of large grana and disorientation of the lamellar systems with respect to one another. Chloroplasts of the most affected plants (grown at 32 C) frequently contained a very large elongated granum, with narrow intrathylakoid spaces. (c) Photoreductive activity was not constant at intermediate growth temperatures but steadily declined with decreasing growth temperatures between 27 and 11 C. Some alterations in chloroplast structure were also observed.

The changes in chloroplast activity and structure indicate that acclimation to temperature takes place over the entire temperature range in which chloroplast development is permitted.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnon DI. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. [PMC free article] [PubMed]
  • McWilliam JR, Naylor AW. Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn. Plant Physiol. 1967 Dec;42(12):1711–1715. [PMC free article] [PubMed]
  • Nolan WG, Smillie RM. Multi-temperature effects on Hill reaction activity of barley chloroplasts. Biochim Biophys Acta. 1976 Sep 13;440(3):461–475. [PubMed]
  • Pearcy RW. Effects of Growth Temperature on the Thermal Stability of the Photosynthetic Apparatus of Atriplex lentiformis (Torr.) Wats. Plant Physiol. 1977 May;59(5):873–878. [PMC free article] [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists


Save items

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


  • PubMed
    PubMed citations for these articles

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...