• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of procbhomepageaboutsubmitalertseditorial board
Proc Biol Sci. Nov 7, 2001; 268(1482): 2235–2243.
PMCID: PMC1088871

Limitation of Trypanosoma brucei parasitaemia results from density-dependent parasite differentiation and parasite killing by the host immune response.

Abstract

In the bloodstream of its mammalian host, the "slender" form of Trypanosoma brucei replicates extracellularly, producing a parasitaemia. At high density, the level of parasitaemia is limited at a sublethal level by differentiation to the non-replicative "stumpy" form and by the host immune response. Here, we derive continuous time equations to model the time-course, cell types and level of trypanosome parasitaemia, and compare the best fits with experimental data. The best fits that were obtained favour a model in which both density-dependent trypanosome differentiation and host immune response have a role in limiting the increase of parasites, much poorer fits being obtained when differentiation and immune response are considered independently of one another. Best fits also favour a model in which the slender-to-stumpy differentiation progresses in a manner that is essentially independent of the cell cycle. Finally, these models also make the prediction that the density-dependent trypanosome differentiation mechanism can give rise to oscillations in parasitaemia level. These oscillations are independent of the immune system and are not due to antigenic variation.

Full Text

The Full Text of this article is available as a PDF (165K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Agur Z, Abiri D, Van der Ploeg LH. Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9626–9630. [PMC free article] [PubMed]
  • Antia R, Nowak MA, Anderson RM. Antigenic variation and the within-host dynamics of parasites. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):985–989. [PMC free article] [PubMed]
  • Balber AE. Trypanosoma brucei: fluxes of the morphological variants in intact and X-irradiated mice. Exp Parasitol. 1972 Apr;31(2):307–319. [PubMed]
  • Barry JD, Turner CM. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol Today. 1991 Aug;7(8):207–211. [PubMed]
  • Barry JD, Crowe JS, Vickerman K. Neutralization of individual variable antigen types in metacyclic populations of Trypanosoma brucei does not prevent their subsequent expression in mice. Parasitology. 1985 Feb;90(Pt 1):79–88. [PubMed]
  • Black SJ, Jack RM, Morrison WI. Host-parasite interactions which influence the virulence of Trypanosoma (Trypanozoon) brucei brucei organisms. Acta Trop. 1983 Mar;40(1):11–18. [PubMed]
  • Black SJ, Sendashonga CN, O'Brien C, Borowy NK, Naessens M, Webster P, Murray M. Regulation of parasitaemia in mice infected with Trypanosoma brucei. Curr Top Microbiol Immunol. 1985;117:93–118. [PubMed]
  • Frank SA. A model for the sequential dominance of antigenic variants in African trypanosome infections. Proc Biol Sci. 1999 Jul 7;266(1426):1397–1401. [PMC free article] [PubMed]
  • Hamm B, Schindler A, Mecke D, Duszenko M. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. Mol Biochem Parasitol. 1990 Apr;40(1):13–22. [PubMed]
  • Hesse F, Selzer PM, Mühlstädt K, Duszenko M. A novel cultivation technique for long-term maintenance of bloodstream form trypanosomes in vitro. Mol Biochem Parasitol. 1995 Mar;70(1-2):157–166. [PubMed]
  • Matthews KR. Developments in the differentiation of Trypanosoma brucei. Parasitol Today. 1999 Feb;15(2):76–80. [PubMed]
  • Matthews KR, Gull K. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes. J Cell Biol. 1994 Jun;125(5):1147–1156. [PMC free article] [PubMed]
  • McLintock LM, Turner CM, Vickerman K. A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms. Parasitology. 1990 Aug;101(Pt 1):49–55. [PubMed]
  • McLintock LM, Turner CM, Vickerman K. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology. Parasite Immunol. 1993 Aug;15(8):475–480. [PubMed]
  • Reuner B, Vassella E, Yutzy B, Boshart M. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol Biochem Parasitol. 1997 Dec 1;90(1):269–280. [PubMed]
  • Seed JR, Black SJ. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes. J Parasitol. 1997 Aug;83(4):656–662. [PubMed]
  • Seed JR, Black SJ. A revised arithmetic model of long slender to short stumpy transformation in the African trypanosomes. J Parasitol. 1999 Oct;85(5):850–854. [PubMed]
  • Seed JR, Sechelski J. Growth of pleomorphic Trypanosoma brucei rhodesiense in irradiated inbred mice. J Parasitol. 1988 Oct;74(5):781–789. [PubMed]
  • Seed JR, Sechelski JB. Mechanism of long slender (LS) to short stumpy (SS) transformation in the African trypanosomes. J Protozool. 1989 Nov-Dec;36(6):572–577. [PubMed]
  • Seed JR, Sechelski J. The inheritance of factors controlling resistance in mice infected with Trypanosoma brucei rhodesiense. J Parasitol. 1995 Aug;81(4):653–657. [PubMed]
  • Sendashonga CN, Black SJ. Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunol. 1982 Jul;4(4):245–257. [PubMed]
  • Turner CM, Aslam N, Dye C. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology. 1995 Sep;111(Pt 3):289–300. [PubMed]
  • Tyler KM, Matthews KR, Gull K. The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers. Proc Biol Sci. 1997 Oct 22;264(1387):1481–1490. [PMC free article] [PubMed]
  • Vassella E, Boshart M. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol Biochem Parasitol. 1996 Nov 12;82(1):91–105. [PubMed]
  • Carotenuto R, Maturi G, Infante V, Capriglione T, Petrucci TC, Campanella C. A novel protein cross-reacting with antibodies against spectrin is localised in the nucleoli of amphibian oocytes. J Cell Sci. 1997 Nov;110(Pt 21):2683–2690. [PubMed]
  • Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965 Nov 20;208(5012):762–766. [PubMed]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...