Logo of plntphysLink to Publisher's site
Plant Physiol. Jan 1992; 98(1): 12–16.
PMCID: PMC1080143

Purification and Characterization of Cinnamyl Alcohol Dehydrogenase from Tobacco Stems 1


Cinnamyl alcohol dehydrogenase (CAD) is an enzyme involved in lignin biosynthesis. In this paper, we report the purification of CAD to homogeneity from tobacco (Nicotiana tabacum) stems. The enzyme is low in abundance, comprising approximately 0.05% of total soluble cell protein. A simple and efficient purification procedure for CAD was developed. It employs three chromatography steps, including two affinity matrices, Blue Sepharose and 2′5′ ADP-Sepharose. The purified enzyme has a specific cofactor requirement for NADP and has high affinity for coniferyl alcohol (Km = 12 micromolar) and coniferaldehyde (Km = 0.3 micromolar). Two different sized polypeptide subunits of 42.5 and 44 kilodaltons were identified and separated by reverse-phase HPLC. Peptide mapping and amino acid composition analysis of the polypeptides showed that they are closely related, although not identical.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Hedrick JL, Smith AJ. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 1988 May;7(5):1241–1248. [PMC free article] [PubMed]
  • Lischwe MA, Ochs D. A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1982 Dec;127(2):453–457. [PubMed]
  • Lüderitz T, Grisebach H. Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem. 1981 Sep;119(1):115–124. [PubMed]
  • Rothermel BA, Nelson T. Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem. 1989 Nov 25;264(33):19587–19592. [PubMed]
  • Sarni F, Grand C, Boudet AM. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem. 1984 Mar 1;139(2):259–265. [PubMed]
  • Walter MH, Grima-Pettenati J, Grand C, Boudet AM, Lamb CJ. Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis: cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5546–5550. [PMC free article] [PubMed]
  • Walter MH, Grima-Pettenati J, Grand C, Boudet AM, Lamb CJ. Extensive sequence similarity of the bean CAD4 (cinnamyl-alcohol dehydrogenase) to a maize malic enzyme. Plant Mol Biol. 1990 Sep;15(3):525–526. [PubMed]
  • Wyrambik D, Grisebach H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem. 1975 Nov 1;59(1):9–15. [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists


Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...


Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...