• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Logo of plntphysLink to Publisher's site
Plant Physiol. Aug 1990; 93(4): 1273–1279.
PMCID: PMC1062668

Biosynthesis of the Tetrapyrrole Pigment Precursor, δ-Aminolevulinic Acid, from Glutamate 1

Abstract

δ-Aminolevulinic acid (ALA), the common biosynthetic precursor of hemes, chlorophylls, and bilins, is synthesized by two distinct routes. Among phototrophic species, purple nonsulfur bacteria form ALA by condensation of glycine with succinyl-CoA, catalyzed by ALA synthase, in a reaction identical to that occurring in the mitochondria of animals, yeast, and fungi. Most or all other phototrophic species form ALA exclusively from the intact carbon skeleton of glutamic acid in a reaction sequence that begins with activation of the α-carboxyl group of glutamate by an ATP-dependent ligation to tRNAGlu, catalyzed by glutamyl-tRNA synthetase. Glutamyl-tRNA is the substrate for a pyridine nucleotide-dependent dehydrogenase reaction whose product is glutamate-1-semialdehyde or a similar reduced compound. Glutamate-1-semialdehyde is then transaminated to form ALA. Regulation of ALA formation from glutamate is exerted at the dehydrogenase step through end product feedback inhibition and induction/repression. In some species, end product inhibition of the glutamyl-tRNA synthetase step and developmental regulation of tRNAGlu level may also occur.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Avissar YJ, Beale SI. Biosynthesis of Tetrapyrrole Pigment Precursors : Pyridoxal Requirement of the Aminotransferase Step in the Formation of delta-Aminolevulinate from Glutamate in Extracts of Chlorella vulgaris. Plant Physiol. 1989 Mar;89(3):852–859. [PMC free article] [PubMed]
  • Avissar YJ, Beale SI. Identification of the enzymatic basis for delta-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol. 1989 Jun;171(6):2919–2924. [PMC free article] [PubMed]
  • Fett WF, Dunn MF. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. [PMC free article] [PubMed]
  • Avissar YJ, Beale SI. Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol. 1990 Mar;172(3):1656–1659. [PMC free article] [PubMed]
  • Avissar YJ, Ormerod JG, Beale SI. Distribution of delta-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol. 1989;151(6):513–519. [PubMed]
  • Grimm B, Bull A, Welinder KG, Gough SP, Kannangara CG. Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and synechococcus. Carlsberg Res Commun. 1989;54(2):67–79. [PubMed]
  • Huang L, Castelfranco PA. Regulation of 5-aminolevulinic Acid synthesis in developing chloroplasts : I. Effect of light/dark treatments in vivo and in organello. Plant Physiol. 1989 Jul;90(3):996–1002. [PMC free article] [PubMed]
  • Huang L, Bonner BA, Castelfranco PA. Regulation of 5-Aminolevulinic Acid (ALA) Synthesis in Developing Chloroplasts : II. Regulation of ALA-Synthesizing Capacity by Phytochrome. Plant Physiol. 1989 Jul;90(3):1003–1008. [PMC free article] [PubMed]
  • Li JM, Brathwaite O, Cosloy SD, Russell CS. 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol. 1989 May;171(5):2547–2552. [PMC free article] [PubMed]
  • Fett WF, Dunn MF. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. [PMC free article] [PubMed]
  • Fett WF, Dunn MF. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. [PMC free article] [PubMed]
  • O'Neill GP, Chen MW, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiol Lett. 1989 Aug;51(3):255–259. [PubMed]
  • Fett WF, Dunn MF. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. [PMC free article] [PubMed]
  • Rieble S, Ormerod JG, Beale SI. Transformation of glutamate to delta-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol. 1989 Jul;171(7):3782–3787. [PMC free article] [PubMed]
  • Fett WF, Dunn MF. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. [PMC free article] [PubMed]

Articles from Plant Physiology are provided here courtesy of American Society of Plant Biologists

Formats:

Related citations in PubMed

See reviews...See all...

Cited by other articles in PMC

See all...

Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...