Display Settings:

Items per page

Results: 6

1.
Figure 4

Figure 4. 4-HNE irreversibly inactivates 20S proteasome in vitro.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

(A) Schematic panel of in vitro incubations. (B) Purified 20S proteasome (1 ug) was incubated for 30 min at 37°C with 4-HNE (10 or 100 µM) and proteasomal activity was measured at the end of incubation. DTT (1μ) was added to the reaction either previous or after 4-HNE incubations. Of interest, prior, but no later, incubation with DTT protected 4-hydroxi-2-nonenal inhibition of proteasomal activity. Error bars indicate SEM. Proteasomal activity [F (7, 32) = 21.37, p<0.0001]. *, p<0.05 vs. control, 4-HNE (10 µM)+DTT (before). #, p<0.05 vs. 4-HNE (10 µM).

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.
2.
Figure 6

Figure 6. Exercise training improves protein quality control in myocardial infarction-induced heart failure.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

Oxidized protein levels (A), soluble oligomers accumulation (B), HSP25 (C) αβ-crystallin (D) protein levels in heart samples from 24 week-old control (sham, white bars), MI-HF (gray bars) and MI-HF exercise trained (MI-HFtr, gray bars) rats. Representative blots of oxidized protein, soluble oligomers, HSP25, αβ-crystallin and GAPDH (E). All measurements were performed in the ventricular remote area. Protein expression was normalized by GAPDH. Error bars indicate SEM. Oxidized protein levels [F (2, 19) = 5.25, p = 0.0312]; soluble oligomers accumulation [F (2, 15) = 3.97, p = 0.0412]; HSP25 [F (2, 19) = 4.21, p = 0.0306] and αβ-crystallin proteins levels [F (2, 17) = 1.49, p = 0.0252]. *, p<0.05 vs. control (sham) rats. ‡, p<0.05 vs. MI-HFtr rats.

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.
3.
Figure 1

Figure 1. Exercise training improves cardiac function and exercise tolerance in myocardial infarction-induced heart failure.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

Schematic panel (A). Fractional shortening (B), distance run (C), heart rate (D) and blood pressure (E) in control (sham, white bars), MI-HF (gray bars) and MI-HF exercise trained (MI-HFtr, gray bars) rats before and after 8 wks of either sedentary or exercise training protocol. Error bars indicate SEM. Interaction between main effects: fractional shortening [F (2, 15) = 5.28, p = 0.0183]; distance run [F (2, 31) = 48.97, p<0.0001]; heart rate [F (2, 13) = 4.06, p = 0.0425] and blood pressure [F (2, 13) = 1.05, p = 0.3764]. §, p<0.05 vs. before experimental protocol. *, p<0.05 vs. control (sham) rats. ‡, p<0.05 vs. MI-HFtr rats.

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.
4.
Figure 5

Figure 5. Oxidative stress contributes to proteasomal inactivation, accumulation of damaged proteins and cell death in cultured neonatal cardiomyocytes.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

Proteasomal activity (A), oxidized protein levels and representative blots (B) and cell death (C) in cultured neonatal cardiomyocytes. Concordance between proteasomal activity, oxidized protein levels and cell death in cultured neonatal cardiomyocytes (D). Cells were stimulated with antimycin A (100 µM, Ant A, gray bars) or H2O2 (100 µM, gray bars) or Epoxomicin (1 µM, EPO, gray bars) for 2 hours. Measurements were performed 24 hrs after treatments. Experiments were repeated at least 5 times. Protein expression was normalized by GAPDH. Error bars indicate SEM. Proteasomal activity [F (3, 20) = 30.85, p<0.0001]; oxidized protein levels [F (2, 9) = 21.84, p = 0.0003] and cell death [F (3, 14) = 27.53, p<0.0001]. #, p<0.05 vs. non-treated cells (control). $, p<0.05 vs. antimycin A- and Epoxomicin-treated cells.

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.
5.
Figure 2

Figure 2. Exercise training improves oxygen consumption and reduces H2O2 release in cardiac isolated mitochondria from myocardial infarction-induced heart failure animal.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

Mitochondrial state 3 (A) and state 4 (B) respiratory rates; respiratory control ratio (C); maximum calcium uptake (D) and H2O2 release (E) in heart samples from 24 week-old control (sham, white bars), MI-HF (gray bars) and MI-HF exercise trained (MI-HFtr, gray bars) rats. All measurements were performed in the ventricular remote area. Error bars indicate SEM. Mitochondrial state 3 [F (2, 41) = 8.62, p = 0.0007] and state 4 [F (2, 41) = 8.86, p = 0.0006] respiratory rates; respiratory control ratio [F (2, 45) = 3.26, p = 0.0475]; maximum calcium uptake [F (2, 14) = 5.72, p = 0.0152] and H2O2 release [F (2, 37) = 5.28, p = 0.0095]. *, p<0.05 vs. control (sham) rats. ‡, p<0.05 vs. MI-HFtr rats.

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.
6.
Figure 3

Figure 3. Exercise training decreases 4-HNE modification of proteasome and re-establishes cardiac ubiquitin-proteasome system function in myocardial infarction-induced heart failure.. From: Exercise Training Restores Cardiac Protein Quality Control in Heart Failure.

(A) 4-HNE protein adducts in heart samples from 24 week-old control (sham), MI-HF and MI-HF exercise trained (MI-HFtr) rats. Protein expression was normalized by GAPDH. Inset: Representative blot of 4-HNE protein adducts. Black arrows indicate changes in the adduct formation in MI-HF and MI-HFtr samples, red arrows indicate changes in the adduct formation of proteins at the molecular weight of proteasomal subunits. (B) 20S proteasome subunits (α5/α7, β1, β5, β7) were precipitated from left ventricle tissue from 24-week-old control, MI-HF and MI-HFtr rats (B, n = 3 per group), and then probed with 4-HNE-modified proteins antibody. Equal sample loading was verified using α5/α7, β1, β5 and β7 proteasome subunits antibody. (C) Chymotrypsin-like activity of 26S proteasome, (D) 20S proteasome α5/α7, β1, β5, β7 protein levels and (E) polyubiquitinated proteins levels in heart samples from 24 week-old control, MI-HF and MI-HFtr rats. Protein expression was normalized by GAPDH. (F) Representative blots of polyubiquitinated proteins, 20S proteasome and GAPDH. All measurements were performed in the ventricular remote area. Error bars indicate SEM. 4-HNE protein adducts [F (2, 15) = 42.58, p<0.0001]; chymotrypsin-like activity of 26S proteasome [F (2, 25) = 12.90, p = 0.0001]; 20S proteasome α5/α7, β1, β5, β7 [F (2, 18) = 0.81, p = 0.4595] and polyubiquitinated proteins levels [F (2, 18) = 4.19, p = 0.0318]. *, p<0.05 vs. control (sham) rats. ‡, p<0.05 vs. MI-HFtr rats.

Juliane C. Campos, et al. PLoS One. 2012;7(12):e52764.

Display Settings:

Items per page

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Write to the Help Desk