We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

Results: 3

Figure 1

Figure 1. Morphology of S. gregaria hind wings.. From: Veins Improve Fracture Toughness of Insect Wings.

(a) Schematic illustration of the three wing zones R, B and C used for the experiments (adapted from [8]). (b) Longitudinal veins (LV) with branching cross veins (CV). Towards the edge of the hind wing the two types of veins show a different morphological structure. Whilst the longitudinal veins mostly show a circular to elliptical cross section, the cross veins show an annulated pattern. (c) Cross section through the wing membrane and a cross-vein. Note that the cutting edge of the wing membrane slightly “crumpled” during the desiccation. (d) Close-up of a cross-vein, showing the compartment-like annulated structure.

Jan-Henning Dirks, et al. PLoS One. 2012;7(8):e43411.
Figure 3

Figure 3. Size and distribution of wing cells in S. gregaria hind wings.. From: Veins Improve Fracture Toughness of Insect Wings.

(a) Typical structure of a hind wing, showing the distribution of the wing cells’ major axis length. Cells with smaller major axis lengths are mostly arranged around the perimeter of the wing (CCL: critical crack length). (b) Mean frequency of wing cell sizes from six hind wings. The distribution of cells corresponds very well to a normal distribution around a mean major axis length of 1.103 mm (σ = 544.16, a = 7.33, R = 0.98). The cumulative membrane area formed by cells smaller than the critical crack length is 19.44% of the overall membrane area (mean ± SD, N = 5553 cells from 6 wings). The colour map of the bars corresponds to subfigure A. (c) 2D-Histogram showing the relative frequency of cell size and their distance to the wing edge. There is a significant positive correlation of the major axis length with the distance to the wing edge (ρ = 0.393, R2 = 0.154, p<0.001, linear correlation, N = 5553 cells).

Jan-Henning Dirks, et al. PLoS One. 2012;7(8):e43411.
Figure 2

Figure 2. Crack propagation and fracture toughness of hind wings.. From: Veins Improve Fracture Toughness of Insect Wings.

(a) Stress-strain curve and corresponding crack length from one wing sample with an induced notch. The numbers indicate the KC indices (see text). With increasing strain the stress on the wing membrane increases until the crack starts growing (0). When reaching cross veins (1–4), the crack propagation temporarily stops and the stress further increases. When the cross veins break, the stress decreases and the crack continues to propagate. (b) Crack length and corresponding fracture toughness KC. The markers 0–4 correspond to the markers in (a). (c) Fracture toughness of hind wing membrane. Although slightly decreasing towards the anal part of the wing, there was no significant difference in-between the fracture toughness KC0 of the membrane from the tested three wing zones (F2,16 = 2.087, p>0.1, ANOVA). (d) The membrane alone had a mean fracture toughness of 1.04±0.25 MPa√m (N = 17). The presence of the first cross-vein (index 1) significantly increased the fracture toughness of the wing structure to 1.57±0.38 MPa√m (t9 = −3.513, p<0.01, paired t-test, both figures show mean±SD, numbers show sample size).

Jan-Henning Dirks, et al. PLoS One. 2012;7(8):e43411.

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Write to the Help Desk