Results: 2

1.
Figure 2

Figure 2. From: Interactions between Procedural Learning and Cocaine Exposure Alter Spontaneous and Cortically Evoked Spike Activity in the Dorsal Striatum .

Impact of cocaine and running-wheel training on cortically evoked activity. Striatal neurons were identified using electrical stimulation (0.5 Hz, 0.1–1.25 mA stimulus intensity, 0.25–0.50 ms pulse duration) delivered to the frontal cortex (see Materials and Methods). (A) Representative traces of cortically evoked spike responses recorded from a single-unit (overlayed records of 10 consecutive stimulations per trial; arrow indicates truncated stimulus artifact) in a vehicle-treated animal are shown. Inset: Representative peri-stimulus time histogram depicting the response of the same single-unit ASshown below to cortical stimulation delivered over 50 consecutive trials. (B) The current intensity (mean ± SEM, left) and spike probability (middle), as derived from measures of cortically evoked activity, were not different between vehicle- and cocaine-treated groups (p > 0.05; two-way ANOVA). However, the onset latency of evoked spikes was significantly decreased in animals exposed to cocaine in a locked wheel (untrained) as compared to vehicle-treated, untrained controls, or cocaine-treated, trained rats (***p < 0.001, two-way ANOVA, Tukey post hoc test, n = 17–32 cells per group).

Janie M. Ondracek, et al. Front Neurosci. 2010;4:206.
2.
Figure 1

Figure 1. From: Interactions between Procedural Learning and Cocaine Exposure Alter Spontaneous and Cortically Evoked Spike Activity in the Dorsal Striatum .

Cocaine prevents wheel training-associated increases in population firing in spontaneously active striatal neurons that receive input from the frontal cortex. (A) Representative recording of spontaneous activity of a striatal neuron identified by electrical stimulation of the frontal cortex. Inset: Magnification of the spontaneous spike activity shown below. (B) Representative firing rate histogram (2 min epoch) depicts the spontaneous activity of the single-unit shown in (A) (note the slow and irregular firing activity characteristic of striatal MSNs). (C) The firing rate distribution for all cells recorded in this study shows that most cells were quiescent (151/251) or fired at relatively low rates (91/251). A small group of outliers (9/251), made up of cells from all treatment groups, exhibited a considerably higher firing rate and was thus excluded from the analysis (the cut-off, indicated by dashed line, was set at 2 SDs above group mean). (D) Comparisons of firing rates (mean ± SEM) of spontaneously active neurons across groups (n = 15–36 cells per group) revealed a facilitatory effect of running-wheel training (after vehicle administration) on spontaneous firing (*p < 0.05, two-way ANOVA, Tukey post hoc test). This effect was prevented in rats that trained under the influence of cocaine (vs. vehicle trained, ***p < 0.001).

Janie M. Ondracek, et al. Front Neurosci. 2010;4:206.

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Write to the Help Desk