Fig 1

Fig 1. From: Debate on GMOs Health Risks after Statistical Findings in Regulatory Tests.

Proposed mode of actions of agricultural GMOs and/or associated pesticides on health. Almost all GMOs disseminated in the environment are plants, namely soy, maize, cotton, and oilseed rape (1995-2010). Their genetic and phenotypic modifications are only herbicide tolerance and / or insecticide production (modified Bt toxins) in more than 99% cases. Thus they can be described as pesticide plants. Consequently, two major health risks are described: (1) due to mid or long term side effects, brought by new pesticide residues in food or feed, and directly due to the new genetic characteristic. These residues can be from herbicide(s) absorbed by tolerance (Roundup residues in more than 90% herbicide-tolerant GMOs) in most cases, or from new modified insecticide Bt toxins, mutated or truncated in all insecticide-GMOs. (2) Insertional mutagenesis linked to the genetic modification, or post-genomic metabolic interferences or derivations. These are direct or indirect less specific effects independent from the toxicology assessment of the transgene product. These unexpected possible consequences cannot be approached by gross substantial equivalence studies without metabolomic analyses. They can be invisible on the plant phenotype, but still able to induce long term toxicity after consumption, specific to each genetic transformation. The possible combined effects between all these impacts cannot be excluded, inducing chronic pathologies after regular consumption. Only long term testing (more than 3 months in mammals) could answer these possibilities. Thus, regulatory agencies must adapt their methods for health risk assessments of agricultural GMOs, taking into account associated pesticides and their formulations. They should also approach combined effects at different periods of life and on several generations, to be complete, overall when a new food/feed concerns billions of people without traditional knowledge of its consumption.

Joël Spiroux de Vendômois, et al. Int J Biol Sci. 2010;6(6):590-598.

Supplemental Content

Filter your results:

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Write to the Help Desk