Results: 5

1.
Figure 3

Figure 3. Correlation of retinal light sensitivity (in dB, x-axis) and outer retinal thickness (in µm; y-axis).. From: Structure-Function Correlation of the Human Central Retina.

The cross table compares positive sensitivity and thickness values (i.e. detectable outer retina on SD-OCT images and measurable light sensitivity) with those having a value of zero. There was a significant relationship between the outer retinal thickness and retinal sensitivity (p<0.001; two-sided Fisher exact test of significance). A clustering of data at zero (n = 28) implicates that a complete loss of the outer nuclear layer was associated with an absolute scotoma, i.e. a complete loss of retinal light sensitivity. When omitting this subset in a sub-analysis, outer retinal thickness and retinal sensitivity still showed a significant correlation (r = 0.66; p<0.001; Spearman-Rho; positive scatter plot).

Peter Charbel Issa, et al. PLoS One. 2010;5(9):e12864.
2.
Figure 1

Figure 1. Ability of co-registration using the MultiModalMapper software to exactly map functional testing on anatomical recordings in a normal subject.. From: Structure-Function Correlation of the Human Central Retina.

The optic nerve head is the anatomical correlate for the physiological blind spot in the visual field. The hollow red square represents the brightest stimulus using microperimetry and was not detected by the subject (absolute scotoma) when projected onto the optic nerve head. In contrast, a much dimmer testing point (green square, 18dB decreased light intensity compared to the brightest stimulus) projected just outside the optic nerve area head was detected by the subject and shows normal light sensitivity. An overlay with the SD-OCT scan (inset, framed in white) shows the normal retinal layers within the area bordering the optic nerve head.

Peter Charbel Issa, et al. PLoS One. 2010;5(9):e12864.
3.
Figure 4

Figure 4. Structure-function correlation of the central retina in a patient with X-linked retinoschisis (upper panels) and a patient with Usher syndrome 2A (lower panels).. From: Structure-Function Correlation of the Human Central Retina.

Retinal sensitivity of the individual testing points is colour coded as in Fig. 2. Upper panels: The functional map derived from microperimetry is superimposed on a cSLO infrared reflectance image (A) and a 15 deg SD-OCT scan (B). Retinal sensitivity is largely preserved despite a splitting of the neurosensory retina mainly confined to layers proximal to the photoreceptors. Only the most distinct alterations result in a relative scotoma (10 dB decreased light intensity compared to the brightest stimulus). The thickness of the corresponding photoreceptor layer (double headed arrow) is about 100 µm. Lower panels: The functional map superimposed on a cSLO fundus autofluorescence image (C) and a cutout of a 30 deg SD-OCT scan (D). Retinal sensitivity is relatively preserved within the parafoveal ring of increased autofluorescence. Peripheral to this ring, the photoreceptor layer reveals a marked thinning. Thickness values at the location of the three perimetric testing points marked with double headed arrows (from left to right) are ∼110 µm, ∼70 µm and ∼50 µm.

Peter Charbel Issa, et al. PLoS One. 2010;5(9):e12864.
4.
Figure 2

Figure 2. Correlation of topographic and tomographic retinal imaging with functional mapping.. From: Structure-Function Correlation of the Human Central Retina.

Threshold values of retinal sensitivity derived from microperimetry are presented according to the scale below panel i) in 2 dB steps. Normal sensitivity is indicated by green colour, and decreased sensitivity is indicated by red colour; open rectangles demonstrate absolute defects (as defined in Ref [11]). The first column illustrates findings in a normal subject, the middle and right column in two patients with macular telangiectasia type 2. The first row shows functional maps superimposed on near-infrared confocal scanning laser ophthalmoscopy (cSLO) images of the central retina. The second and third row (d–i) show the functional maps superimposed on the back-tilted cSLO images and a high-resolution spectral-domain optical coherence tomography (SD-OCT) scan. The lower panels (g-i) show enlarged cut-outs of the middle row (d–f). For the normal subject, selected anatomical layers of the retina are indicated for orientation on the left-hand side of panel g (INL: inner nuclear layer; ONL: outer nuclear layer; IS/OS: junction of the inner and outer photoreceptor segment; RPE: retinal pigment epithelium). The tissue defect within the inner retina (e,h) is associated with a normal retinal light sensitivity (green squares), whereas damage to the outer retina (the photoreceptor layers) was accompanied by a strong loss of retinal sensitivity (red filled and red open squares; f,i).

Peter Charbel Issa, et al. PLoS One. 2010;5(9):e12864.
5.
Figure 5

Figure 5. Longitudinal structure-function correlation in macular disease.. From: Structure-Function Correlation of the Human Central Retina.

Retinal sensitivity of the individual testing points is colour coded as in Fig. 2. The 54 year old female patient was treated with 0.5 mg intravitreal ranibizumab in monthly follow-up (f/u) intervals. Shown are images obtained at baseline (left column), after 6 (middle column) and 12 monthly treatments with ranibizumab (right column). The first row shows functional maps (colour coded as in Fig. 1) superimposed on late-phase fluorescein angiography cSLO images. The patient shows leakage of dye in the macula with a maximum at the paracentral temporal area at baseline. Treatment with monthly ranibizumab considerably reduced such leakage (panels b, c). However, the patient developed loss of retinal sensitivity and showed an absolute scotoma (open red rectangles) at the completion of the study period (c). The second and third row (enlarged cut-outs of the middle row) show corresponding SD-OCT images superimposed on back-tilted infrared cSLO images and the same functional map as shown in the upper row. At baseline, the patient shows considerable abnormality of inner retinal anatomy (hyporeflective tissue defect; panels d, g). Retinal sensitivity was normal. After six months of treatment, outer retina abnormalities developed affecting the photoreceptor layer (panels e, h). This alteration measuring about 100 µm appeared to be too small to be detected by fundus-controlled microperimetry. However, after 12 months of treatment, damage of the outer retina was associated with a strong loss of retinal sensitivity (f, i). Visual acuity at baseline was 20/40 and remained unchanged over the study period despite such pronounced loss of paracentral visual function.

Peter Charbel Issa, et al. PLoS One. 2010;5(9):e12864.

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Write to the Help Desk