U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 138

  • Wrong UID 506566
1.

Alagille syndrome due to a JAG1 point mutation

Alagille syndrome (ALGS) is a multisystem disorder with a wide spectrum of clinical variability; this variability is seen even among individuals from the same family. The major clinical manifestations of ALGS are bile duct paucity on liver biopsy, cholestasis, congenital cardiac defects (primarily involving the pulmonary arteries), butterfly vertebrae, ophthalmologic abnormalities (most commonly posterior embryotoxon), and characteristic facial features. Renal abnormalities, growth failure, developmental delays, splenomegaly, and vascular abnormalities may also occur. [from GeneReviews]

MedGen UID:
365434
Concept ID:
C1956125
Disease or Syndrome
2.

Mucolipidosis type II

GNPTAB-related disorders comprise the phenotypes mucolipidosis II (ML II) and mucolipidosis IIIa/ß (ML IIIa/ß), and phenotypes intermediate between ML II and ML IIIa/ß. ML II is evident at birth and slowly progressive; death most often occurs in early childhood. Orthopedic abnormalities present at birth may include thoracic deformity, kyphosis, clubfeet, deformed long bones, and/or dislocation of the hip(s). Growth often ceases in the second year of life; contractures develop in all large joints. The skin is thickened, facial features are coarse, and gingiva are hypertrophic. All children have cardiac involvement, most commonly thickening and insufficiency of the mitral valve and, less frequently, the aortic valve. Progressive mucosal thickening narrows the airways, and gradual stiffening of the thoracic cage contributes to respiratory insufficiency, the most common cause of death. ML IIIa/ß becomes evident at about age three years with slow growth rate and short stature; joint stiffness and pain initially in the shoulders, hips, and fingers; gradual mild coarsening of facial features; and normal to mildly impaired cognitive development. Pain from osteoporosis becomes more severe during adolescence. Cardiorespiratory complications (restrictive lung disease, thickening and insufficiency of the mitral and aortic valves, left and/or right ventricular hypertrophy) are common causes of death, typically in early to middle adulthood. Phenotypes intermediate between ML II and ML IIIa/ß are characterized by physical growth in infancy that resembles that of ML II and neuromotor and speech development that resemble that of ML IIIa/ß. [from GeneReviews]

MedGen UID:
435914
Concept ID:
C2673377
Disease or Syndrome
3.

Deficiency of guanidinoacetate methyltransferase

The creatine deficiency disorders (CDDs), inborn errors of creatine metabolism and transport, comprise three disorders: the creatine biosynthesis disorders guanidinoacetate methyltransferase (GAMT) deficiency and L-arginine:glycine amidinotransferase (AGAT) deficiency; and creatine transporter (CRTR) deficiency. Developmental delay and cognitive dysfunction or intellectual disability and speech-language disorder are common to all three CDDs. Onset of clinical manifestations of GAMT deficiency (reported in ~130 individuals) is between ages three months and two years; in addition to developmental delays, the majority of individuals have epilepsy and develop a behavior disorder (e.g., hyperactivity, autism, or self-injurious behavior), and about 30% have movement disorder. AGAT deficiency has been reported in 16 individuals; none have had epilepsy or movement disorders. Clinical findings of CRTR deficiency in affected males (reported in ~130 individuals) in addition to developmental delays include epilepsy (variable seizure types and may be intractable) and behavior disorders (e.g., attention deficit and/or hyperactivity, autistic features, impulsivity, social anxiety), hypotonia, and (less commonly) a movement disorder. Poor weight gain with constipation and prolonged QTc on EKG have been reported. While mild-to-moderate intellectual disability is commonly observed up to age four years, the majority of adult males with CRTR deficiency have been reported to have severe intellectual disability. Females heterozygous for CRTR deficiency are typically either asymptomatic or have mild intellectual disability, although a more severe phenotype resembling the male phenotype has been reported. [from GeneReviews]

MedGen UID:
154356
Concept ID:
C0574080
Disease or Syndrome
4.

Allan-Herndon-Dudley syndrome

Allan-Herndon-Dudley syndrome (AHDS), an X-linked disorder, is characterized in males by neurologic findings (hypotonia and feeding difficulties in infancy, developmental delay / intellectual disability ranging from mild to profound) and later-onset pyramidal signs, extrapyramidal findings (dystonia, choreoathetosis, paroxysmal movement disorder, hypokinesia, masked facies), and seizures, often with drug resistance. Additional findings can include dysthyroidism (manifest as poor weight gain, reduced muscle mass, and variable cold intolerance, sweating, elevated heart rate, and irritability) and pathognomonic thyroid test results. Most heterozygous females are not clinically affected but may have minor thyroid test abnormalities. [from GeneReviews]

MedGen UID:
208645
Concept ID:
C0795889
Disease or Syndrome
5.

Methylcobalamin deficiency type cblG

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
344426
Concept ID:
C1855128
Disease or Syndrome
6.

Mitochondrial DNA depletion syndrome 13

FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]

MedGen UID:
815922
Concept ID:
C3809592
Disease or Syndrome
7.

Aicardi-Goutieres syndrome 4

Most characteristically, Aicardi-Goutières syndrome (AGS) manifests as an early-onset encephalopathy that usually, but not always, results in severe intellectual and physical disability. A subgroup of infants with AGS present at birth with abnormal neurologic findings, hepatosplenomegaly, elevated liver enzymes, and thrombocytopenia, a picture highly suggestive of congenital infection. Otherwise, most affected infants present at variable times after the first few weeks of life, frequently after a period of apparently normal development. Typically, they demonstrate the subacute onset of a severe encephalopathy characterized by extreme irritability, intermittent sterile pyrexias, loss of skills, and slowing of head growth. Over time, as many as 40% develop chilblain skin lesions on the fingers, toes, and ears. It is becoming apparent that atypical, sometimes milder, cases of AGS exist, and thus the true extent of the phenotype associated with pathogenic variants in the AGS-related genes is not yet known. [from GeneReviews]

MedGen UID:
332084
Concept ID:
C1835912
Disease or Syndrome
8.

Syndromic X-linked intellectual disability Lubs type

MECP2 duplication syndrome is a severe neurodevelopmental disorder characterized by early-onset hypotonia, feeding difficulty, gastrointestinal manifestations including gastroesophageal reflux and constipation, delayed psychomotor development leading to severe intellectual disability, poor speech development, progressive spasticity, recurrent respiratory infections (in ~75% of affected individuals), and seizures (in ~50%). MECP2 duplication syndrome is 100% penetrant in males. Occasionally females have been described with a MECP2 duplication and a range of findings from mild intellectual disability to a phenotype similar to that seen in males. In addition to the core features, autistic behaviors, nonspecific neuroradiologic findings on brain MRI, mottled skin, and urogenital anomalies have been observed in several affected boys. [from GeneReviews]

MedGen UID:
337496
Concept ID:
C1846058
Disease or Syndrome
9.

Aicardi-Goutieres syndrome 3

Most characteristically, Aicardi-Goutières syndrome (AGS) manifests as an early-onset encephalopathy that usually, but not always, results in severe intellectual and physical disability. A subgroup of infants with AGS present at birth with abnormal neurologic findings, hepatosplenomegaly, elevated liver enzymes, and thrombocytopenia, a picture highly suggestive of congenital infection. Otherwise, most affected infants present at variable times after the first few weeks of life, frequently after a period of apparently normal development. Typically, they demonstrate the subacute onset of a severe encephalopathy characterized by extreme irritability, intermittent sterile pyrexias, loss of skills, and slowing of head growth. Over time, as many as 40% develop chilblain skin lesions on the fingers, toes, and ears. It is becoming apparent that atypical, sometimes milder, cases of AGS exist, and thus the true extent of the phenotype associated with pathogenic variants in the AGS-related genes is not yet known. [from GeneReviews]

MedGen UID:
324389
Concept ID:
C1835916
Disease or Syndrome
10.

Mitochondrial DNA depletion syndrome, encephalomyopathic form with methylmalonic aciduria

SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized by onset of the following features in infancy or childhood (median age of onset 2 months; range of onset birth to 6 years): psychomotor retardation, hypotonia, dystonia, muscular atrophy, sensorineural hearing impairment, postnatal growth retardation, and feeding difficulties. Other less frequent features include distinctive facial features, contractures, kyphoscoliosis, gastroesophageal reflux, ptosis, choreoathetosis, ophthalmoplegia, and epilepsy (infantile spasms or generalized convulsions). The median survival is 20 years; approximately 30% of affected individuals succumb during childhood. Affected individuals may have hyperintensities in the basal ganglia, cerebral atrophy, and leukoencephalopathy on head MRI. Elevation of methylmalonic acid (MMA) in the urine and plasma is found in a vast majority of affected individuals, although at levels that are far below those typically seen in individuals with classic methylmalonic aciduria. [from GeneReviews]

MedGen UID:
413170
Concept ID:
C2749864
Disease or Syndrome
11.

Developmental and epileptic encephalopathy, 1

Developmental and epileptic encephalopathy-1 (DEE1) is a severe form of epilepsy characterized by frequent tonic seizures or spasms beginning in infancy with a specific EEG finding of suppression-burst patterns, characterized by high-voltage bursts alternating with almost flat suppression phases. Approximately 75% of DEE1 patients progress to tonic spasms with clustering, arrest of psychomotor development, and hypsarrhythmia on EEG (Kato et al., 2007). DEE1 is part of a phenotypic spectrum of disorders caused by mutation in the ARX gene comprising a nearly continuous series of developmental disorders ranging from lissencephaly (LISX2; 300215) to Proud syndrome (300004) to infantile spasms without brain malformations (DEE) to syndromic (309510) and nonsyndromic (300419) mental retardation. Although males with ARX mutations are often more severely affected, female mutation carriers may also be affected (Kato et al., 2004; Wallerstein et al., 2008). Reviews Deprez et al. (2009) reviewed the genetics of epilepsy syndromes starting in the first year of life and included a diagnostic algorithm. Genetic Heterogeneity of Developmental and Epileptic Encephalopathy Also see DEE2 (300672), caused by mutation in the CDKL5 gene (300203); DEE3 (609304), caused by mutation in the SLC25A22 gene (609302); DEE4 (612164), caused by mutation in the STXBP1 gene (602926); DEE5 (613477), caused by mutation in the SPTAN1 gene (182810); DEE6A (607208), also known as Dravet syndrome, caused by mutation in the SCN1A gene (182389); DEE6B (619317), also caused by mutation in the SCN1A gene; DEE7 (613720), caused by mutation in the KCNQ2 gene (602235); DEE8 (300607), caused by mutation in the ARHGEF9 gene (300429); DEE9 (300088), caused by mutation in the PCDH19 gene (300460); DEE10 (613402), caused by mutation in the PNKP gene (605610); DEE11 (613721), caused by mutation in the SCN2A gene (182390); DEE12 (613722), caused by mutation in the PLCB1 gene (607120); DEE13 (614558), caused by mutation in the SCN8A gene (600702); DEE14 (614959), caused by mutation in the KCNT1 gene (608167); DEE15 (615006), caused by mutation in the ST3GAL3 gene (606494); DEE16 (615338), caused by mutation in the TBC1D24 gene (613577); DEE17 (615473), caused by mutation in the GNAO1 gene (139311); DEE18 (615476), caused by mutation in the SZT2 gene (615463); DEE19 (615744), caused by mutation in the GABRA1 gene (137160); DEE20 (300868), caused by mutation in the PIGA gene (311770); DEE21 (615833), caused by mutation in the NECAP1 gene (611623); DEE22 (300896), caused by mutation in the SLC35A2 gene (314375); DEE23 (615859), caused by mutation in the DOCK7 gene (615730); DEE24 (615871), caused by mutation in the HCN1 gene (602780); DEE25 (615905), caused by mutation in the SLC13A5 gene (608305); DEE26 (616056), caused by mutation in the KCNB1 gene (600397); DEE27 (616139), caused by mutation in the GRIN2B gene (138252); DEE28 (616211), caused by mutation in the WWOX gene (605131); DEE29 (616339), caused by mutation in the AARS gene (601065); DEE30 (616341), caused by mutation in the SIK1 gene (605705); DEE31A (616346) and DEE31B (620352), caused by mutation in the DNM1 gene (602377); DEE32 (616366), caused by mutation in the KCNA2 gene (176262); DEE33 (616409), caused by mutation in the EEF1A2 gene (602959); DEE34 (616645), caused by mutation in the SLC12A5 gene (606726); DEE35 (616647), caused by mutation in the ITPA gene (147520); DEE36 (300884), caused by mutation in the ALG13 gene (300776); DEE37 (616981), caused by mutation in the FRRS1L gene (604574); DEE38 (617020), caused by mutation in the ARV1 gene (611647); DEE39 (612949), caused by mutation in the SLC25A12 gene (603667); DEE40 (617065), caused by mutation in the GUF1 gene (617064); DEE41 (617105), caused by mutation in the SLC1A2 gene (600300); DEE42 (617106), caused by mutation in the CACNA1A gene (601011); DEE43 (617113), caused by mutation in the GABRB3 gene (137192); DEE44 (617132), caused by mutation in the UBA5 gene (610552); DEE45 (617153), caused by mutation in the GABRB1 gene (137190); DEE46 (617162), caused by mutation in the GRIN2D gene (602717); DEE47 (617166), caused by mutation in the FGF12 gene (601513); DEE48 (617276), caused by mutation in the AP3B2 gene (602166); DEE49 (617281), caused by mutation in the DENND5A gene (617278); DEE50 (616457) caused by mutation in the CAD gene (114010); DEE51 (617339), caused by mutation in the MDH2 gene (154100); DEE52 (617350), caused by mutation in the SCN1B gene (600235); DEE53 (617389), caused by mutation in the SYNJ1 gene (604297); DEE54 (617391), caused by mutation in the HNRNPU gene (602869); DEE55 (617599), caused by mutation in the PIGP gene (605938); DEE56 (617665), caused by mutation in the YWHAG gene (605356); DEE57 (617771), caused by mutation in the KCNT2 gene (610044); DEE58 (617830), caused by mutation in the NTRK2 gene (600456); DEE59 (617904), caused by mutation in the GABBR2 gene (607340); DEE60 (617929), caused by mutation in the CNPY3 gene (610774); DEE61 (617933), caused by mutation in the ADAM22 gene (603709); DEE62 (617938), caused by mutation in the SCN3A gene (182391); DEE63 (617976), caused by mutation in the CPLX1 gene (605032); DEE64 (618004), caused by mutation in the RHOBTB2 gene (607352); DEE65 (618008), caused by mutation in the CYFIP2 gene (606323); DEE66 (618067), caused by mutation in the PACS2 gene (610423); DEE67 (618141), caused by mutation in the CUX2 gene (610648); DEE68 (618201), caused by mutation in the TRAK1 gene (608112); DEE69 (618285), caused by mutation in the CACNA1E gene (601013); DEE70 (618298) caused by mutation in the PHACTR1 gene (608723); DEE71 (618328), caused by mutation in the GLS gene (138280); DEE72 (618374), caused by mutation in the NEUROD2 gene (601725); DEE73 (618379), caused by mutation in the RNF13 gene (609247); DEE74 (618396), caused by mutation in the GABRG2 gene (137164); DEE75 (618437), caused by mutation in the PARS2 gene (612036); DEE76 (618468), caused by mutation in the ACTL6B gene (612458); DEE77 (618548), caused by mutation in the PIGQ gene (605754); DEE78 (618557), caused by mutation in the GABRA2 gene (137140); DEE79 (618559), caused by mutation in the GABRA5 gene (137142); DEE80 (618580), caused by mutation in the PIGB gene (604122); DEE81 (618663), caused by mutation in the DMXL2 gene (612186); DEE82 (618721), caused by mutation in the GOT2 gene (138150); DEE83 (618744), caused by mutation in the UGP2 gene (191760); DEE84 (618792), caused by mutation in the UGDH gene (603370); DEE85 (301044), caused by mutation in the SMC1A gene (300040); DEE86 (618910), caused by mutation in the DALRD3 gene (618904); DEE87 (618916), caused by mutation in the CDK19 gene (614720); DEE88 (618959), caused by mutation in the MDH1 gene (152400); DEE89 (619124), caused by mutation in the GAD1 gene (605363); DEE90 (301058), caused by mutation in the FGF13 gene (300070); DEE91 (617711), caused by mutation in the PPP3CA gene (114105); DEE92 (617829), caused by mutation in the GABRB2 gene (600232); DEE93 (618012), caused by mutation in the ATP6V1A gene (607027); DEE94 (615369), caused by mutation in the CHD2 gene (602119); DEE95 (618143), caused by mutation in the PIGS gene (610271); DEE96 (619340), caused by mutation in the NSF gene (601633); DEE97 (619561), caused by mutation in the iCELF2 gene (602538); DEE98 (619605), caused by mutation in the ATP1A2 gene (182340); DEE99 (619606), caused by mutation in the ATP1A3 gene (182350); DEE100 (619777), caused by mutation in the FBXO28 gene (609100); DEE101 (619814), caused by mutation in the GRIN1 gene (138249); DEE102 (619881), caused by mutation in the SLC38A3 gene (604437); DEE103 (619913), caused by mutation in the KCNC2 gene (176256); DEE104 (619970), caused by mutation in the ATP6V0A1 gene (192130); DEE105 (619983), caused by mutation in the HID1 gene (605752); DEE106 (620028), caused by mutation in the UFSP2 gene (611482); DEE107 (620033), caused by mutation in the NAPB gene ( [from OMIM]

MedGen UID:
483052
Concept ID:
C3463992
Disease or Syndrome
12.

Aicardi-Goutieres syndrome 6

Most characteristically, Aicardi-Goutières syndrome (AGS) manifests as an early-onset encephalopathy that usually, but not always, results in severe intellectual and physical disability. A subgroup of infants with AGS present at birth with abnormal neurologic findings, hepatosplenomegaly, elevated liver enzymes, and thrombocytopenia, a picture highly suggestive of congenital infection. Otherwise, most affected infants present at variable times after the first few weeks of life, frequently after a period of apparently normal development. Typically, they demonstrate the subacute onset of a severe encephalopathy characterized by extreme irritability, intermittent sterile pyrexias, loss of skills, and slowing of head growth. Over time, as many as 40% develop chilblain skin lesions on the fingers, toes, and ears. It is becoming apparent that atypical, sometimes milder, cases of AGS exist, and thus the true extent of the phenotype associated with pathogenic variants in the AGS-related genes is not yet known. [from GeneReviews]

MedGen UID:
761287
Concept ID:
C3539013
Disease or Syndrome
13.

Pontocerebellar hypoplasia type 4

TSEN54 pontocerebellar hypoplasia (TSEN54-PCH) comprises three PCH phenotypes (PCH2, 4, and 5) that share characteristic neuroradiologic and neurologic findings. The three PCH phenotypes (which differ mainly in life expectancy) were considered to be distinct entities before their molecular basis was known. PCH2. Children usually succumb before age ten years (those with PCH4 and 5 usually succumb as neonates). Children with PCH2 have generalized clonus, uncoordinated sucking and swallowing, impaired cognitive development, lack of voluntary motor development, cortical blindness, and an increased risk for rhabdomyolysis during severe infections. Epilepsy is present in approximately 50%. PCH4. Neonates often have seizures, multiple joint contractures ("arthrogryposis"), generalized clonus, and central respiratory impairment. PCH5 resembles PCH4 and has been described in one family. [from GeneReviews]

MedGen UID:
384027
Concept ID:
C1856974
Congenital Abnormality; Disease or Syndrome
14.

Developmental and epileptic encephalopathy, 4

STXBP1 encephalopathy with epilepsy is characterized by early-onset encephalopathy with epilepsy (i.e., moderate-to-severe intellectual disability, refractory seizures, and ongoing epileptiform activity). The median age of onset of seizures is six weeks (range 1 day to 13 years). Seizure types can include infantile spasms; generalized tonic-clonic, clonic, or tonic seizures; and myoclonic, focal, atonic, and absence seizures. Epilepsy syndromes can include Ohtahara syndrome, West syndrome, Lennox-Gaustaut syndrome, and Dravet syndrome (not SCN1A-related), classic Rett syndrome (not MECP2-related), and atypical Rett syndrome (not CDKL5-related). The EEG is characterized by focal epileptic activity, burst suppression, hypsarrhythmia, or generalized spike-and-slow waves. Other findings can include abnormal tone, movement disorders (especially ataxia and dystonia), and behavior disorders (including autism spectrum disorder). Feeding difficulties are common. [from GeneReviews]

MedGen UID:
436917
Concept ID:
C2677326
Disease or Syndrome
15.

X-linked lissencephaly with abnormal genitalia

X-linked lissencephaly-2 (LISX2) is a developmental disorder characterized by structural brain anomalies, early-onset intractable seizures, severe psychomotor retardation, and ambiguous genitalia. Males are severely affected and often die within the first days or months of life, whereas females may be unaffected or have a milder phenotype (Bonneau et al., 2002). LISX2 is part of a phenotypic spectrum of disorders caused by mutation in the ARX gene comprising a nearly continuous series of developmental disorders ranging from hydranencephaly and lissencephaly to Proud syndrome (300004) to infantile spasms without brain malformations (DEE1; 308350) to syndromic (309510) and nonsyndromic (300419) mental retardation (Kato et al., 2004; Wallerstein et al., 2008). For a general phenotypic description and a discussion of genetic heterogeneity of lissencephaly, see LIS1 (607432). [from OMIM]

MedGen UID:
375832
Concept ID:
C1846171
Disease or Syndrome
16.

MGAT2-congenital disorder of glycosylation

Congenital disorders of glycosylation (CDGs) are a genetically heterogeneous group of autosomal recessive disorders caused by enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins. These glycoconjugates play critical roles in metabolism, cell recognition and adhesion, cell migration, protease resistance, host defense, and antigenicity, among others. CDGs are divided into 2 main groups: type I CDGs (see, e.g., CDG1A, 212065) comprise defects in the assembly of the dolichol lipid-linked oligosaccharide (LLO) chain and its transfer to the nascent protein, whereas type II CDGs refer to defects in the trimming and processing of the protein-bound glycans either late in the endoplasmic reticulum or the Golgi compartments. The biochemical changes of CDGs are most readily observed in serum transferrin (TF; 190000), and the diagnosis is usually made by isoelectric focusing of this glycoprotein (reviews by Marquardt and Denecke, 2003; Grunewald et al., 2002). Genetic Heterogeneity of Congenital Disorder of Glycosylation Type II Multiple forms of CDG type II have been identified; see CDG2B (606056) through CDG2Z (620201), and CDG2AA (620454) to CDG2BB (620546). [from OMIM]

MedGen UID:
443956
Concept ID:
C2931008
Disease or Syndrome
17.

Pontocerebellar hypoplasia type 2A

TSEN54 pontocerebellar hypoplasia (TSEN54-PCH) comprises three PCH phenotypes (PCH2, 4, and 5) that share characteristic neuroradiologic and neurologic findings. The three PCH phenotypes (which differ mainly in life expectancy) were considered to be distinct entities before their molecular basis was known. PCH2. Children usually succumb before age ten years (those with PCH4 and 5 usually succumb as neonates). Children with PCH2 have generalized clonus, uncoordinated sucking and swallowing, impaired cognitive development, lack of voluntary motor development, cortical blindness, and an increased risk for rhabdomyolysis during severe infections. Epilepsy is present in approximately 50%. PCH4. Neonates often have seizures, multiple joint contractures ("arthrogryposis"), generalized clonus, and central respiratory impairment. PCH5 resembles PCH4 and has been described in one family. [from GeneReviews]

MedGen UID:
376379
Concept ID:
C1848526
Disease or Syndrome
18.

Sulfite oxidase deficiency due to molybdenum cofactor deficiency type C

Molybdenum cofactor deficiency (MoCD) represents a spectrum, with some individuals experiencing significant signs and symptoms in the neonatal period and early infancy (termed early-onset or severe MoCD) and others developing signs and symptoms in childhood or adulthood (termed late-onset or mild MoCD). Individuals with early-onset MoCD typically present in the first days of life with severe encephalopathy, including refractory seizures, opisthotonos, axial and appendicular hypotonia, feeding difficulties, and apnea. Head imaging may demonstrate loss of gray and white matter differentiation, gyral swelling, sulci injury (typically assessed by evaluating the depth of focal lesional injury within the sulci), diffusely elevated T2-weighted signal, and panlobar diffusion restriction throughout the forebrain and midbrain with relative sparring of the brain stem. Prognosis for early-onset MoCD is poor, with about 75% succumbing in infancy to secondary complications of their neurologic disability (i.e., pneumonia). Late-onset MoCD is typically characterized by milder symptoms, such as acute neurologic decompensation in the setting of infection. Episodes vary in nature but commonly consist of altered mental status, dystonia, choreoathetosis, ataxia, nystagmus, and fluctuating hypotonia and hypertonia. These features may improve after resolution of the inciting infection or progress in a gradual or stochastic manner over the lifetime. Brain imaging may be normal or may demonstrate T2-weighted hyperintense or cystic lesions in the globus pallidus, thinning of the corpus callosum, and cerebellar atrophy. [from GeneReviews]

MedGen UID:
340761
Concept ID:
C1854990
Disease or Syndrome
19.

Adenylosuccinate lyase deficiency

Adenylosuccinase deficiency is an autosomal recessive inborn error of metabolism caused by an enzymatic defect in de novo purine synthesis (DNPS) pathway. ADSL deficiency leads to the accumulation of toxic intermediates, including succinyladenosine (S-Ado) and succinylaminoimidazole carboxamide riboside (SAICAr) in body fluids. There are 3 major phenotypic forms of the disorder that correlate with different values of the S-Ado and SAICAr concentration ratios (S-Ado/SAICAr) in the cerebrospinal fluid. These include the most severe fatal neonatal encephalopathy (S-Ado/SAICAr ratio less than 1); childhood form (type I) with severe psychomotor retardation (S-Ado/SAICAr ratio close to 1), and a milder form (type II) with psychomotor retardation or hypotonia (S-Ado/SAICAr ratio greater than 2) (summary by Baresova et al., 2012). [from OMIM]

MedGen UID:
78641
Concept ID:
C0268126
Disease or Syndrome
20.

Microcephaly 2, primary, autosomal recessive, with or without cortical malformations

In WDR62 primary microcephaly (WDR62-MCPH), microcephaly (occipitofrontal circumference [OFC] = -2 SD) is usually present at birth, but in some instances becomes evident later in the first year of life. Growth is otherwise normal. Except for brain malformations in most affected individuals, no other congenital malformations are observed. Central nervous system involvement can include delayed motor development, mild-to-severe intellectual disability (ID), behavior problems, epilepsy, spasticity, and ataxia. [from GeneReviews]

MedGen UID:
346929
Concept ID:
C1858535
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...