Click to search

Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations: An Evidence-Based Analysis.

Authors

Journal

Ont Health Technol Assess Ser. 2009;9(20):1-58. Epub 2009 Oct 1.

Affiliation

Abstract

In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry's newly released Diabetes Strategy.After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,DIABETES STRATEGY EVIDENCE PLATFORM: Summary of Evidence-Based AnalysesContinuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based AnalysisBehavioural Interventions for Type 2 Diabetes: An Evidence-Based AnalysisBARIATRIC SURGERY FOR PEOPLE WITH DIABETES AND MORBID OBESITY: An Evidence-Based SummaryCommunity-Based Care for the Management of Type 2 Diabetes: An Evidence-Based AnalysisHome Telemonitoring for Type 2 Diabetes: An Evidence-Based AnalysisApplication of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario

OBJECTIVE: The objective of this analysis is to review the efficacy of continuous subcutaneous insulin infusion (CSII) pumps as compared to multiple daily injections (MDI) for the type 1 and type 2 adult diabetics.

CLINICAL NEED AND TARGET POPULATION: Insulin therapy is an integral component of the treatment of many individuals with diabetes. Type 1, or juvenile-onset diabetes, is a life-long disorder that commonly manifests in children and adolescents, but onset can occur at any age. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells results in a decrease in insulin production, which in turn necessitates exogenous insulin therapy. Type 2, or 'maturity-onset' diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. The condition tends to develop gradually and may remain undiagnosed for many years. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy. CSII PUMPS: In conventional therapy programs for diabetes, insulin is injected once or twice a day in some combination of short- and long-acting insulin preparations. Some patients require intensive therapy regimes known as multiple daily injection (MDI) programs, in which insulin is injected three or more times a day. It's a time consuming process and usually requires an injection of slow acting basal insulin in the morning or evening and frequent doses of short-acting insulin prior to eating. The most common form of slower acting insulin used is neutral protamine gagedorn (NPH), which reaches peak activity 3 to 5 hours after injection. There are some concerns surrounding the use of NPH at night-time as, if injected immediately before bed, nocturnal hypoglycemia may occur. To combat nocturnal hypoglycemia and other issues related to absorption, alternative insulins have been developed, such as the slow-acting insulin glargine. Glargine has no peak action time and instead acts consistently over a twenty-four hour period, helping reduce the frequency of hypoglycemic episodes. Alternatively, intensive therapy regimes can be administered by continuous insulin infusion (CSII) pumps. These devices attempt to closely mimic the behaviour of the pancreas, continuously providing a basal level insulin to the body with additional boluses at meal times. Modern CSII pumps are comprised of a small battery-driven pump that is designed to administer insulin subcutaneously through the abdominal wall via butterfly needle. The insulin dose is adjusted in response to measured capillary glucose values in a fashion similar to MDI and is thus often seen as a preferred method to multiple injection therapy. There are, however, still risks associated with the use of CSII pumps. Despite the increased use of CSII pumps, there is uncertainty around their effectiveness as compared to MDI for improving glycemic control. PART A: TYPE 1 DIABETIC ADULTS (#ENTITYSTARTX02265;19 YEARS) An evidence-based analysis on the efficacy of CSII pumps compared to MDI was carried out on both type 1 and type 2 adult diabetic populations.

RESEARCH QUESTIONS: Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 1 diabetes?Are CSII pumps more effective than MDI for improving additional outcomes related to diabetes such as quality of life (QoL)?

LITERATURE SEARCH:

INCLUSION CRITERIA: Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, EMBASE, CINAHLAdults (≥ 19 years)Type 1 diabetesStudy evaluates CSII vs. MDIPublished between January 1, 2002 - March 24, 2009Patient currently on intensive insulin therapy

EXCLUSION CRITERIA: Studies with <20 patientsStudies <5 weeks in durationCSII applied only at night time and not 24 hours/dayMixed group of diabetes patients (children, adults, type 1, type 2)Pregnancy studies

OUTCOMES OF INTEREST: The primary outcomes of interest were glycosylated hemoglobin (HbA1c) levels, mean daily blood glucose, glucose variability, and frequency of hypoglycaemic events. Other outcomes of interest were insulin requirements, adverse events, and quality of life.

SEARCH STRATEGY: The literature search strategy employed keywords and subject headings to capture the concepts of: 1) insulin pumps, and 2) type 1 diabetes. The search was run on July 6, 2008 in the following databases: Ovid MEDLINE (1996 to June Week 4 2008), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2008 Week 26), OVID CINAHL (1982 to June Week 4 2008) the Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. A search update was run on March 24, 2009 and studies published prior to 2002 were also examined for inclusion into the review. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2002 and March 24, 2009. Abstracts were reviewed, and studies meeting the inclusion criteria outlined above were obtained. Reference lists were also checked for relevant studies.

SUMMARY OF FINDINGS: The database search identified 519 relevant citations published between 1996 and March 24, 2009. Of the 519 abstracts reviewed, four RCTs and one abstract met the inclusion criteria outlined above. While efficacy outcomes were reported in each of the trials, a meta-analysis was not possible due to missing data around standard deviations of change values as well as missing data for the first period of the crossover arm of the trial. Meta-analysis was not possible on other outcomes (quality of life, insulin requirements, frequency of hypoglycemia) due to differences in reporting. HBA1C: In studies where no baseline data was reported, the final values were used. Two studies (Hanaire-Broutin et al. 2000, Hoogma et al. 2005) reported a slight reduction in HbA1c of 0.35% and 0.22% respectively for CSII pumps in comparison to MDI. A slightly larger reduction in HbA1c of 0.84% was reported by DeVries et al.; however, this study was the only study to include patients with poor glycemic control marked by higher baseline HbA1c levels. One study (Bruttomesso et al. 2008) showed no difference between CSII pumps and MDI on Hba1c levels and was the only study using insulin glargine (consistent with results of parallel RCT in abstract by Bolli 2004). While there is statistically significant reduction in HbA1c in three of four trials, there is no evidence to suggest these results are clinically significant. MEAN BLOOD GLUCOSE: Three of four studies reported a statistically significant reduction in the mean daily blood glucose for patients using CSII pump, though these results were not clinically significant. One study (DeVries et al. 2002) did not report study data on mean blood glucose but noted that the differences were not statistically significant. There is difficulty with interpreting study findings as blood glucose was measured differently across studies. Three of four studies used a glucose diary, while one study used a memory meter. In addition, frequency of self monitoring of blood glucose (SMBG) varied from four to nine times per day. Measurements used to determine differences in mean daily blood glucose between the CSII pump group and MDI group at clinic visits were collected at varying time points. Two studies use measurements from the last day prior to the final visit (Hoogma et al. 2005, DeVries et al. 2002), while one study used measurements taken during the last 30 days and another study used measurements taken during the 14 days prior to the final visit of each treatment period. GLUCOSE VARIABILITY: All four studies showed a statistically significant reduction in glucose variability for patients using CSII pumps compared to those using MDI, though one, Bruttomesso et al. 2008, only showed a significant reduction at the morning time point. Brutomesso et al. (ABSTRACT TRUNCATED)

PMID

23074525 [PubMed]

PMCID

PMC3377523 Free full text
 Citation 3 of 30815 Back to results 
Standard PubMed