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Agent Category: Peptide

Target: Integrin αvβ3

Target Category: Receptor-ligand binding

Method of detection: Positron emission tomography (PET); optical, near-infrared (NIR) 
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Source of signal: 64Cu and quantum dot

Activation: No

Studies:
• In vitro

• Rodents

Click on protein, nucleotide 
(RefSeq), and gene for more 
information about integrin 
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Background
[PubMed]

Optical fluorescence imaging is increasingly used to monitor biological functions of specific targets in small 
animals (1-3). However, the intrinsic fluorescence of biomolecules poses a problem when fluorophores that 
absorb visible light (350–700 nm) are used. Near-infrared (NIR) fluorescence (700–1,000 nm) detection avoids 
the background fluorescence interference of natural biomolecules, providing a high contrast between target and 
background tissues. NIR fluorophores have a wider dynamic range and minimal background as a result of 
reduced scattering compared with visible fluorescence detection. They also have high sensitivity, resulting from 
low fluorescence background, and high extinction coefficients, which provide high quantum yields. The NIR 
region is also compatible with solid-state optical components, such as diode lasers and silicon detectors. NIR 
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fluorescence (NIRF) imaging is becoming a non-invasive alternative to radionuclide imaging in small animals (4, 
5).

Fluorescent semiconductor quantum dots (QDs) are nanocrystals made of CdSe/CdTe-ZnS with radii of 1–10 
nm (6-8). They can be tuned to emit light in a range of wavelengths by changing their sizes and composition, 
thus providing broad excitation profiles and high absorption coefficients. They have narrow and symmetric 
emission spectra with long excited-state lifetimes (20–50 ns) compared with fluorescent dyes (1–10 ns). QDs 
possess good quantum yields of 40–90% and high extinction coefficients, and they are more photo-stable than 
conventional organic dyes. They can be coated and capped with hydrophilic materials for additional 
conjugations with biomolecules, such as peptides, antibodies, nucleic acids, and small organic compounds, 
which are tested in vitro and in vivo (8-12). Although many cells have been labeled with QDs in vitro with little 
cytotoxicity, there are only limited studies of long-term toxicity of QDs in small animals (13-21), and little is 
known about the toxicity and the mechanisms of clearance and metabolism of QDs in humans.

Integrins are a family of heterodimeric, cell-surface glycoproteins that mediate diverse biological events 
involving cell–cell and cell–matrix interactions (22). Integrins comprise an α and a β subunit, and they are 
important for cell adhesion and signal transduction. The αvβ3 integrin is the most prominent receptor class, 
affecting tumor growth, tumor invasiveness, metastasis, tumor-induced angiogenesis, inflammation, 
osteoporosis, and rheumatoid arthritis (23-28). The αvβ3 integrin is strongly expressed on tumor cells and 
activated endothelial cells. In contrast, expression of αvβ3 integrin is weak on resting endothelial cells and on 
most normal tissues. The αvβ3 antagonists are being studied as anti-tumor and anti-angiogenic agents, and the 
agonists are being studied as angiogenic agents for coronary angiogenesis (27, 29, 30). A tripeptide sequence 
comprising Arg-Gly-Asp (RGD) has been identified as a recognition motif used by extracellular matrix proteins 
(vitronectin, fibrinogen, laminin, and collagen) to bind to a variety of integrins including αvβ3. Various 
radiolabeled cyclic RGD peptides have been introduced for tumor imaging and tumor angiogenesis (31). The 
multimodality probe 64Cu-DOTA-QD-c(RGDyK) has been developed for PET and NIRF imaging of tumor 
vasculature to study in vivo biodistribution of the tracer in tumor-bearing mice (32). 64Cu-DOTA-QD-
c(RGDyK) has been shown to have a high accumulation in the tumor vasculature with little extravasation and a 
predominant liver and spleen accumulation.

Synthesis
[PubMed]

Commercially available QDs within amine-functionalized groups (emission, 705 nm; QD705, Invitrogen) were 
mixed with c(RGDyK)-4-maleimidobutyric acid N-hydroxysuccinimide ester and DOTA-N-
hydroxysulfosuccinimide ester at room temperature for 1 h (32). The resulting DOTA-QD-RGD was purified 
with column chromatography. DOTA-QD was also prepared as a control. The molar ratio of DOTA to QD was 
estimated to be 28.2 for DOTA-QD-RGD and 118 for DOTA-QD. The number of RGD peptides was estimated 
to be 90 per QD nanoparticle. DOTA-QD-RGD or DOTA-QD (50 µg) was added to 74 MBq (2 mCi) of 64CuCl2 
in sodium acetate buffer (pH 6.5). The reaction mixture was incubated at 40°C for 1 h. The 64Cu-labeling yield 
was >90% for both QD conjugates (n = 3).

In Vitro Studies: Testing in Cells and Tissues
[PubMed]

Cai et al. (32) performed competitive cell-binding assays using human glioblastoma U87MG tumor cells 
(expressing αvβ3). DOTA-QD-RGD inhibited the binding of 125I-echistatin in a dose-dependent manner with a 
50% inhibition concentration value of 3.88 nM, which was ~60-fold higher than c(RGDyK). Fluorescence 
microscopy showed that DOTA-QD had minimal binding to U87MG cells, whereas DOTA-QD-RGD (1 nM) 
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bound to the cell surface of U87MG cells. The DOTA-QD-RGD binding was inhibited by 1,000 nM c(RGDyK). 
On the other hand, DOTA-QD-RGD did not bind to αvβ3-negative C6 cells.

Animal Studies

Rodents
[PubMed]

Cai et al. (32) used a whole-body PET imaging system at 1, 5, 18, and 25 h to study the accumulation of 64Cu-
DOTA-QD-c(RGDyK) in mice bearing U87MG tumors. 64Cu-DOTA-QD-c(RGDyK) (0.02 nmol/mouse) 
injected intravenously into nude mice (n = 3/group) bearing U87MG tumors (maximal tumor/muscle ratio = 
4.1) showed that the liver, spleen, and lymph nodes were clearly visualized. Tumor accumulation of 64Cu-
DOTA-QD-c(RGDyK) was ~1% injected dose/gram (ID/g) at 1 h, 2.2% ID/g at 5 h, 4.0% ID/g at 18 h, and 4.3% 
ID/g at 25 h, distinctly higher than 64Cu-DOTA-QD (<1% ID/g) at all time points. There was a marked intensity 
of signal in the liver (~50% ID/g) for both conjugates. Ex vivo PET imaging and NIRF imaging scans were 
performed on tissues harvested at 5 h. The liver, spleen, and bone marrow all had very strong signals, and the 
U87MG tumor exhibited significantly higher uptake than the heart, kidneys, and muscle. Both in vivo and ex 
vivo PET imaging data produced similar tissue/muscle ratios. The liver/muscle, spleen/muscle, bone/muscle, and 
kidney/muscle ratios were ~100:1, 30:1, 10:1, and 2:1, respectively. The U87MG tumor/muscle ratios for DOTA-
QD-RGD and DOTA-QD were ~4:1 and 1:1, respectively. The liver/muscle, spleen/muscle, bone/muscle, kidney/
muscle, and tumor/muscle ratios for NIRF imaging were ~100:1, 50:1, 40:1, 1:1, and 2:1, respectively. No 
blocking experiments were performed. Excellent linear correlation was observed between the signals measured 
with in vivo PET imaging and those measured with ex vivo NIRF imaging and tissue homogenate fluorescence 
(r2 = 0.93). Histological examination of the tumor sections revealed that DOTA-QD-RGD targets primarily the 
tumor vasculature through an RGD–integrin αvβ3 interaction on the endothelial cells, with little extravasation.

Other Non-Primate Mammals
[PubMed]

No publication is currently available.

Non-Human Primates
[PubMed]

No publication is currently available.

Human Studies
[PubMed]

No publication is currently available.

NIH Support
R21 EB001785, R21 R01 CA119053, R21 CA121842, R21 CA102123, P50 CA114747, U54 CA119367, R24 
CA93862
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