U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Adair TH, Montani JP. Angiogenesis. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of Angiogenesis

Angiogenesis.

Show details

References

1.
Hunter J. A treatise on the blood, inflammation and gunshot wounds. Palmer JF (Ed). p. 195, 1794; Philadelphia: Raswell, Barrington, and Haswell, 1840.
2.
Hunter J. The works of John Hunter, F.R.S. with notes. Palmer JF (Ed). London: Longman, Rees, Orme, Brown, Green, and Longman, 1835.
3.
Aristotle on the parts of animals. W. Ogle (Trans.). London: Kegan Paul, Trench & Co., 1882.
4.
Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 285: pp. 1182–6, 1971. [PubMed: 4938153]
5.
Folkman J. History of angiogenesis. In: Angiogenesis—An integrative approach from science to medicine. Figg WD, Folkman J (Eds). New York: Springer. pp. 1–14, 2008. 10.1007/978-0-387-71518-6_1. [CrossRef]
6.
Bielenberg DR, D’Amore PA. Judah Folkman’s contribution to the inhibition of angiogenesis. Lymphat Res Biol 6: pp. 203–7, 2008. 10.1089/lrb.2008.1016. [PubMed: 19093793] [CrossRef]
7.
Angiogenesis Foundation. Historical highlights of the angiogenesis field. September 2010, http://www​.angio.org​/understanding/highlight.php.
8.
Cao Y, Langer R. A review of Judah Folkman’s remarkable achievements in biomedicine. Proc Natl Acad Sci USA 105: pp. 13203–5, 2008. 10.1073/pnas.0806582105. [PMC free article: PMC2533169] [PubMed: 18772371] [CrossRef]
9.
Hudlicka O, Tyler KR. Angiogenesis—The growth of the vascular system. London: Academic Press, 1986.
10.
Hudlicka O. Growth of vessels—Historical review. In: Angiogenesis. Hammersen F, Hudlicka O (Eds). Basel, Switzerland: Karger. pp. 1–8, 1984.
11.
Noden DM. Development of craniofacial blood vessels. In: Development of the vascular system. Issues Biomed. Feinberg RN, Sherer GK, Auerbach R (Eds). Basel, Switzerland: Karger. pp. 1–24, 1991.
12.
Risau W. Mechanisms of angiogenesis. Nature 386: pp. 671–4, 1997. [PubMed: 9109485]
13.
Risau W. Differentiation of endothelium. FASEB J 9: pp. 926–33, 1995. [PubMed: 7615161]
14.
Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis. Circ Res 101: pp. 125–36, 2007. 10.1161/CIRCRESAHA.107.148932. [PubMed: 17641236] [CrossRef]
15.
Coffin JD, Poole TJ. Endothelial cell origin and migration in embryonic heart and cranial blood vessel development. Anat Rec 231: pp. 383–95, 1991. [PubMed: 1763820]
16.
Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 11: pp. 73–91, 1995. 10.1146/annurev.cellbio.11.1.73. [PubMed: 8689573] [CrossRef]
17.
Pinter E, Barreuther M, Lu T, Imhof BA, Madri JA. Platelet–endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. Am J Pathol 150: pp. 1523–30, 1997. [PMC free article: PMC1858227] [PubMed: 9137078]
18.
Hogan BL, Kolodziej PA. Organogenesis: Molecular mechanisms of tubulogenesis. Nat Rev Genet 3: pp. 513–23, 2002. [PubMed: 12094229]
19.
Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228: pp. 35–45, 1990. 10.1002/ar.1092280107. [PubMed: 2240600] [CrossRef]
20.
Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216: pp. 154–64, 1986. 10.1002/ar.1092160207. [PubMed: 3777448] [CrossRef]
21.
Carmeliet P, Collen D. Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 190: pp. 387–405, 2000. 10.1002/(SICI)1096-9896(200002)190:3<387::AID-PATH595>3.3.CO;2-I. [PubMed: 10685072] [CrossRef]
22.
Gerhardt H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4: pp. 241–6, 2008. 10.4161/org.4.4.7414. [PMC free article: PMC2634329] [PubMed: 19337404] [CrossRef]
23.
Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16: pp. 2684–98, 2002. 10.1101/gad.242002. [PMC free article: PMC187458] [PubMed: 12381667] [CrossRef]
24.
Carmeliet P, De Smet F, Loges S, Mazzone M. Branching morphogenesis and antiangiogenesis candidates: Tip cells lead the way. Nat Rev Clin Oncol 6: pp. 315–26, 2009. [PubMed: 19483738]
25.
Horowitz A, Simons M. Branching morphogenesis. Circ Res 103: pp. 784–95, 2008. 10.1161/CIRCRESAHA.108.181818. [PubMed: 18845818] [CrossRef]
26.
van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: Matrix metalloproteinases in the lead. Cardiovasc Res 78: pp. 203–12, 2008. [PubMed: 18079100]
27.
Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: Where motility begins. Trends Cell Biol 12: pp. 112–20, 2002. 10.1016/S0962-8924(01)02237-1. [PubMed: 11859023] [CrossRef]
28.
Chien S. Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. Am J Physiol Heart Circ Physiol 292: pp. H1209–24, 2007. [PubMed: 17098825]
29.
Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 436: pp. 193–200, 2005. 10.1038/nature03875. [PubMed: 16015319] [CrossRef]
30.
Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104: pp. 3225–30, 2007. 10.1073/pnas.0611177104. [PMC free article: PMC1805603] [PubMed: 17296941] [CrossRef]
31.
Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: pp. 439–42, 1996. 10.1038/380439a0. [PubMed: 8602242] [CrossRef]
32.
Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: pp. 435–9, 1996. 10.1038/380435a0. [PubMed: 8602241] [CrossRef]
33.
Jain RK. Normalization of tumor vasculature: An emerging concept in anti-antiangiogenic therapy. Science 307: pp. 58–62, 2005. [PubMed: 15637262]
34.
Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling by intussusception: From form to function. News Physiol Sci 18: pp. 65–70, 2003. [PubMed: 12644622]
35.
Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system: Branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224: pp. 391–402, 2002. [PubMed: 12203731]
36.
Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314: pp. 107–17, 2003. 10.1007/s00441-003-0784-3. [PubMed: 14574551] [CrossRef]
37.
Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Dev Dyn 231: pp. 474–88, 2004. [PubMed: 15376313]
38.
Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptive microvascular growth: A common alternative to capillary sprouting. Arch Histol Cytol 55: pp. 65–75, 1992. 10.1679/aohc.55.Suppl_65. [PubMed: 1290678] [CrossRef]
39.
Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74: pp. 172–83, 2007. 10.1016/j.mvr.2007.05.006. [PMC free article: PMC2692317] [PubMed: 17631914] [CrossRef]
40.
Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: A critical overview. Clin Chem 49: pp. 32–40, 2003. 10.1373/49.1.32. [PubMed: 12507958] [CrossRef]
41.
Auerbach R, Akhtar N, Lewis RL, Shinners BL. Angiogenesis assays: Problems and pitfalls. Cancer Metastasis Rev 19: pp. 167–72, 2000. [PubMed: 11191056]
42.
Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90: pp. 195–221, 2009. 10.1111/j.1365-2613.2008.00633.x. [PMC free article: PMC2697546] [PubMed: 19563606] [CrossRef]
43.
Femke H, Melotte V, van Beijnum JR, Griffioen AW. Endothelial cell biology. In: Angiogenesis assays —A critical appraisal of current techniques. Staton CA, Lewis C, Bicknell R (Eds). West Sussex, UK: John Wiley & Sons, Ltd. pp. 1–38, 2006.
44.
Lee WS. Endothelial cell proliferation assays. In: Angiogenesis assays—A critical appraisal of current techniques. Staton CA, Lewis C, Bicknell R (Eds). West Sussex, UK: John Wiley & Sons, Ltd. pp. 39–50, 2006. 10.1002/9780470029350.ch2. [CrossRef]
45.
Van Daele P, Van Coevorden A, Roger PP, Boeynaems J-M. Effects of adenine nucleotides on the proliferation of aortic endothelial cells. Circ Res 70: pp. 82–90, 1992. [PubMed: 1727689]
46.
Clement A, Riedel N, Brody JS. [3H]thymidine incorporation does not correlate with growth state in cultured alveolar type II cells. Am J Respir Cell Mol Biol 3: pp. 159–64, 1990. [PubMed: 2378750]
47.
Ethier MF, Dobson JG Jr. Adenosine stimulation of DNA synthesis in human endothelial cells. Am J Physiol 272: pp. H1470–9, 1997. [PubMed: 9087626]
48.
Polytarchou C, Hatziapostolou M, Papadimitriou E. Endothelial cell migration assays. In: Angiogenesis assays—A critical appraisal of current techniques. Staton CA, Lewis C, Bicknell R (Eds). West Sussex, UK: John Wiley & Sons, Ltd. pp. 51–64, 2006. 10.1002/9780470029350.ch3. [CrossRef]
49.
Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115: pp. 453–66, 1962. 10.1084/jem.115.3.453. [PMC free article: PMC2137509] [PubMed: 13872176] [CrossRef]
50.
Smith EJ, Staton CA. Tubule formation assays. In: Angiogenesis assays—A critical appraisal of current techniques. Staton CA, Lewis C, Bicknell R (Eds). West Sussex, UK: John Wiley & Sons, Ltd. pp. 65–87, 2006. 10.1002/9780470029350.ch4. [CrossRef]
51.
Nakatsu MN, Davis J, Hughes CCW. Optimized Fibrin Gel Bead Assay for the Study of Angiogenesis. J Vis Exp 3: p. 186, 2007. 10.3791/186. [PMC free article: PMC2570172] [PubMed: 18978935] [CrossRef]
52.
Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 63: pp. 115–22, 1990. [PubMed: 1695694]
53.
Aplin AC, Fogel E, Zorzi P, Nicosia RF. The aortic ring model of angiogenesis. Methods Enzymol 443: pp. 119–36, 2008. 10.1016/S0076-6879(08)02007-7. [PubMed: 18772014] [CrossRef]
54.
Nicosia RF. The aortic ring model of angiogenesis: A quarter century of search and discovery. J Cell Mol Med 13: pp. 4113–36, 2009. 10.1111/j.1582-4934.2009.00891.x. [PMC free article: PMC4496118] [PubMed: 19725916] [CrossRef]
55.
Kiefer FN, Munk VC, Humar R, Dieterle T, Landmann L, Battegay EJ. A versatile in vitro assay for investigating angiogenesis of the heart. Exp Cell Res 300: pp. 272–82, 2004. 10.1016/j.yexcr.2004.06.032. [PubMed: 15474993] [CrossRef]
56.
Montesano R, Mouron P, Orci L. Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: A simple in vitro model of angiogenesis. Cell Biol Int Rep 9: pp. 869–75, 1985. 10.1016/S0309-1651(85)90107-9. [PubMed: 2415260] [CrossRef]
57.
Zijlstra A, Mikolon D, Stupack DG. Angiogenesis assays in the chick. In: Angiogenesis assays—A critical appraisal of current techniques. Staton CA, Lewis C, Bicknell R (Eds). West Sussex, UK: John Wiley & Sons, Ltd. pp. 183–201, 2006. 10.1002/9780470029350.ch10. [CrossRef]
58.
Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH. Morphometric measurements of chorioallantoic membrane vascularity: Effects of hypoxia and hyperoxia. Am J Physiol 260: pp. H1385–9, 1991. [PubMed: 2012235]
59.
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28: pp. 3412–22, 2009. 10.1038/onc.2009.189. [PubMed: 19597469] [CrossRef]
60.
Akhtar N, Dickerson EB, Auerbach R. The sponge/Matrigel angiogenesis assay. Angiogenesis 5: pp. 75–80, 2002. [PubMed: 12549862]
61.
Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52: pp. 409–15, 1919. [PMC free article: PMC1402716] [PubMed: 16993405]
62.
Krogh A. The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol 52: pp. 457–74, 1919. [PMC free article: PMC1402718] [PubMed: 16993410]
63.
Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: Evidence for a metabolic hypothesis. Am J Physiol 259: pp. R393–404, 1990. [PubMed: 1697737]
64.
Hoppeler H, Kayar SR. Capillarity and oxidative capacity of muscles. News Physiol Sci 3: pp. 113–16, 1988.
65.
Hudlicka O. Development of microcirculation: Capillary growth and adaptation. In: Handbook of physiology. The cardiovascular system. Microcirculation. Bethesda, MD: American Physiological Society, sect. 2, vol. IV, pt. 1, chap. 5, pp. 165–216, 1984.
66.
Hoppeler H, Mathieu O, Weibel ER, Krauer R, Lindstedt SL, Taylor CR. Design of the mammalian respiratory system. VIII. Capillaries in skeletal muscles. Respir Physiol 44: pp. 129–50, 1981. 10.1016/0034-5687(81)90080-3. [PubMed: 7232883] [CrossRef]
67.
Mathieu O, Cruz-Orive LM, Hoppeler H, Weibel ER. Estimating length density and quantifying anisotropy in skeletal muscle capillaries. J Microsc 131: pp. 131–46, 1983. [PubMed: 6620361]
68.
Adair TH, Wells ML, Hang J, Montani JP. A stereological method for estimating length density of the arterial vascular system. Am J Physiol 266: pp. H1434–8, 1994. [PubMed: 8184921]
69.
Elias H, Hyde DM. A guide to practical stereology. Basel, Switzerland: Karger, 1983.
70.
Weibel ER. Stereological methods—Practical methods for biological morphometry. Vol 1. New York: Academic Press, 1979.
71.
Hoppeler H, Hudlicka O, Uhlmann E. Relationship between mitochondria and oxygen consumption in isolated cat muscles. J Physiol 385: pp. 661–75, 1987. [PMC free article: PMC1192366] [PubMed: 3309266]
72.
Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404: pp. 1–9, 1985. 10.1007/BF00581484. [PubMed: 4011395] [CrossRef]
73.
Amann K, Breitbach M, Ritz E, Mall G. Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol 9: pp. 1018–22, 1998. [PubMed: 9621284]
74.
Gray SD, Renkin EM. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles on rabbits. Microvasc Res 16: pp. 406–25, 1978. 10.1016/0026-2862(78)90073-0. [PubMed: 748722] [CrossRef]
75.
Wagner PD. Skeletal muscle angiogenesis. A possible role for hypoxia. Adv Exp Med Biol 502: pp. 21–38, 2001. [PubMed: 11950140]
76.
Adolfsson J, Ljungqvist A, Tornling G, Unge G. Capillary increase in the skeletal muscle of trained young and adult rats. J Physiol 310: pp. 529–32, 1981. [PMC free article: PMC1274756] [PubMed: 7230047]
77.
Andersen P, Henriksson J. Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise. J Physiol 270: pp. 677–90, 1977. [PMC free article: PMC1353538] [PubMed: 198532]
78.
Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56: pp. 831–8, 1984. [PubMed: 6373687]
79.
Ingjer F. Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. J Physiol 294: pp. 419–32, 1979. [PMC free article: PMC1280565] [PubMed: 159945]
80.
Terjung RL, Zarzeczny R, Yang HT. Muscle blood flow and mitochondrial function: Influence of aging. Int J Sport Nutr Exerc Metab 12: pp. 368–78, 2002. [PubMed: 12432180]
81.
Brown MD, Cotter MA, Hudlická O, Vrbová G. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch 361: pp. 241–50, 1976. 10.1007/BF00587288. [PubMed: 943767] [CrossRef]
82.
Hudlická O, Dodd L, Renkin EM, Gray SD. Early changes in fiber profile and capillary density in long-term stimulated muscles. Am J Physiol 243: pp. H528–35, 1982. [PubMed: 6214958]
83.
Adair TH, Hang J, Wells ML, Magee FD, Montani JP. Long-term electrical stimulation of rabbit skeletal muscle increases growth of paired arteries and veins. Am J Physiol 269: pp. H717–24, 1995. [PubMed: 7653637]
84.
Romanul FCA, Van Der Meulen JP. Slow and fast muscles after cross innervation: Enzymatic and physiological changes. Arch Neurol 17: pp. 387–402, 1967. [PubMed: 6047792]
85.
Sillau AH, Aquin L, Lechner AJ, Bui MV, Banchero N. Increased capillary supply in skeletal muscle of guinea pigs acclimated to cold. Respir Physiol 42: pp. 233–45, 1980. 10.1016/0034-5687(80)90117-6. [PubMed: 7221222] [CrossRef]
86.
Buser KS, Kopp B, Gehr P, Weibel ER, Hoppeler H. Effect of cold environment on skeletal muscle mitochondria in growing rats. Cell Tissue Res 225: pp. 427–36, 1982. 10.1007/BF00214693. [PubMed: 7105158] [CrossRef]
87.
Asano A, Morimatsu M, Nikami H, Yoshida T, Saito M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: Implication in cold-induced angiogenesis. Biochem J 328: pp. 179–83, 1997. [PMC free article: PMC1218903] [PubMed: 9359850]
88.
Capó LA, Sillau AH. The effect of hyperthyroidism on capillarity and oxidative capacity in rat soleus and gastrocnemius muscles. J Physiol 342: pp. 1–14, 1983. [PMC free article: PMC1193943] [PubMed: 6226777]
89.
Sillau AH. Skeletal muscle capillarity in hyperthyroid and hypothyroid rats. Adv Exp Med Biol 191: pp. 341–53, 1985. [PubMed: 3008511]
90.
Davis PJ, Davis FB, Mousa SA. Thyroid hormone-induced angiogenesis. Curr Cardiol Rev 5: pp. 12–6, 2009. 10.2174/157340309787048158. [PMC free article: PMC2803282] [PubMed: 20066142] [CrossRef]
91.
Tomanek RJ, Busch TL. Coordinated capillary and myocardial growth in response to thyroxine treatment. Anat Rec 251: pp. 44–9, 1998. 10.1002/(SICI)1097-0185(199805)251:1<44::AID-AR8>3.3.CO;2-A. [PubMed: 9605219] [CrossRef]
92.
Zhang L, Cooper-Kuhn CM, Nannmark U, Blomgren K, Kuhn HG. Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J Cereb Blood Flow Metab 30: pp. 323–35, 2010. 10.1038/jcbfm.2009.216. [PMC free article: PMC2949126] [PubMed: 19861975] [CrossRef]
93.
Bassett JH, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 14: pp. 356–64, 2003. [PubMed: 14516933]
94.
Dusseau JW, Hutchins PM. Hypoxia-induced angiogenesis in chick chorioallantoic membranes: A role for adenosine. Respir Physiol 71: pp. 33–44, 1988. 10.1016/0034-5687(88)90113-2. [PubMed: 2448857] [CrossRef]
95.
Adair TH, Montani JP, Guyton AC. Effects of intermittent hypoxia on structural vascular adaptation in chick embryos. Am J Physiol 254: pp. H1194–9, 1988. [PubMed: 3381904]
96.
Adair TH, Guyton AC, Montani JP, Lindsay HL, Stanek KA. Whole body structural vascular adaptation to prolonged hypoxia in chick embryos. Am J Physiol 252: pp. H1228–34, 1987. [PubMed: 2438949]
97.
Byerly TC. Studies in growth. I. Suffocation effects in the chick embryo. Anat Rec 32: pp. 249–70, 1926. 10.1002/ar.1090320402. [CrossRef]
98.
Snyder GK. Muscle capillarity in chicks following hypoxia. Comp Biochem Physiol A Comp Physiol 87: pp. 819–22, 1987. 10.1016/0300-9629(87)90407-5. [PubMed: 2887365] [CrossRef]
99.
Snyder GK, Byers RL, Kayar SR. Effects of hypoxia on tissue capillarity in geese. Respir Physiol 58: pp. 151–60, 1984. [PubMed: 6522870]
100.
Ward NL, Moore E, Noon K, Spassil N, Keenan E, Ivanco TL, LaManna JC. Cerebral angiogenic factors, angiogenesis, and physiological response to chronic hypoxia differ among four commonly used mouse strains. J Appl Physiol 102: pp. 1927–35, 2007. 10.1152/japplphysiol.00909.2006. [PubMed: 17234796] [CrossRef]
101.
Harik SI, Hritz MA, LaManna JC. Hypoxia-induced brain angiogenesis in the adult rat. J Physiol 485: pp. 525–30, 1995. [PMC free article: PMC1158011] [PubMed: 7545234]
102.
LaManna JC, Vendel LM, Farrell RM. Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol 72: pp. 2238–43, 1992. [PubMed: 1629078]
103.
Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA. Increased brain capillaries in chronic hypoxia. J Appl Physiol 86: pp. 1211–9, 1999. [PubMed: 10194205]
104.
Reynaud X, Dorey CK. Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest Ophthalmol Vis Sci 35: pp. 3169–77, 1994. [PubMed: 8045712]
105.
Patz A, Eastham A. Oxygen studies in retrolental fibroplasia: The effect of rapid vs gradual withdrawal from oxygen on the mouse eye. Arch Ophthalmol 57: pp. 724–29, 1957. [PubMed: 13410262]
106.
Ashton N, Ward B, Serpell G. Role of oxygen in the genesis of retrolental fibroplasia; a preliminary report. Br J Ophthalmol 37: pp. 513–20, 1953. 10.1136/bjo.37.9.513. [PMC free article: PMC1324188] [PubMed: 13081949] [CrossRef]
107.
Kremer I, Kissun R, Ben-Sira I, Garner A. Oxygen-induced retinopathy in newborn kittens. Invest Ophthalmol Vis Sci 28: pp. 126–30, 1987. [PubMed: 2433248]
108.
Ricci B. Effects of hyperbaric, normobaric and hypobaric oxygen supplementation on retinal vessels in newborn rats: A preliminary study. Exp Eye Res 44: pp. 459–64, 1987. 10.1016/S0014-4835(87)80179-3. [PubMed: 2439360] [CrossRef]
109.
Ventresca M, Gonder J, Tanswell A. Oxygen-induced proliferative retinopathy in the newborn rat. Can J Ophthalmol 25: pp. 186–9, 1990. [PubMed: 2354394]
110.
Penn JS, Tolman BL, Lowery L. Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34: pp. 576–85, 1993. [PubMed: 8449677]
111.
Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesisEffect of oxygen gradients and inspired oxygen concentration. Surgery 90: pp. 262–70, 1981. [PubMed: 6166996]
112.
Yang HT, Prior BM, Lloyd PG, Taylor JC, Li Z, Laughlin MH, Terjung RL. Training-induced vascular adaptations to ischemic muscle. J Physiol Pharmacol 59: pp. 57–70, 2008. [PMC free article: PMC2654575] [PubMed: 19258657]
113.
Bylund AC, Hammarsten J, Holm J, Schersten T. Enzyme activities in skeletal muscles from patients with peripheral arterial sufficiency. Eur J Clin Invest 6: pp. 425–9, 1976. [PubMed: 1001344]
114.
Dahllof AG, Bjorntorp P, Holm J, Schersten T. Metabolic activity of skeletal muscle in patients with peripheral arterial insufficiency. Eur J Clin Invest 4: pp. 9–15, 1974. 10.1111/j.1365-2362.1974.tb00365.x. [PubMed: 4819838] [CrossRef]
115.
Elander A, Idstrom JP, Schersten T, Bylund-Fellenius AC. Metabolic adaptation to reduced muscle blood flow. I. Enzyme and metabolite alterations. Am J Physiol 249: pp. E63–9, 1985. [PubMed: 2990234]
116.
Hammarsten J, Bylund-Fellenius AC, Holm J, Schersten T, Krotkiewski M. Capillary supply and muscle fibre types in patients with intermittent claudication: Relationships between morphology and metabolism. Eur J Clin Invest 10: pp. 301–5, 1980. [PubMed: 6775957]
117.
Holm J, Bjorntorp P, Schersten T. Metabolic activity in human skeletal muscle. Effect of peripheral arterial insufficiency. Eur J Clin Invest 2: pp. 321–5, 1972. 10.1111/j.1365-2362.1972.tb00657.x. [PubMed: 5082067] [CrossRef]
118.
Holm J, Dahllof AG, Bjorntorp P, Schersten T. Enzyme studies in muscles of patients with intermittent claudication. Effect of training. Scand J Clin Lab Invest 128: pp. 201–5, 1973. [PubMed: 4283880]
119.
Lundgren F, Dahllof AG, Schersten T, Bylund-Fellenius AC. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: Spontaneous adaptation, effect of different treatments and consequences on walking performance. Clin Sci 77: pp. 485–93, 1989. [PubMed: 2555105]
120.
Cassin S, Gilbert RD, Bunnell CE, Johnson EM. Capillary development during exposure to chronic hypoxia. Am J Physiol 220: pp. 448–51, 1971. [PubMed: 5540896]
121.
Snyder GK, Wilcox EE, Burnham EW. Effects of hypoxia on muscle capillarity in rats. Respir Physiol 62: pp. 135–40, 1985. 10.1016/0034-5687(85)90057-X. [PubMed: 4070833] [CrossRef]
122.
Sillau AH, Aquin L, Bui MV, Banchero N. Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pflügers Arch 386: pp. 39–45, 1980. 10.1007/BF00584185. [PubMed: 7191962] [CrossRef]
123.
Valdivia E. Total capillary bed in striated muscle of guinea pigs native to the Peruvian mountains. Am J Physiol 194: pp. 585–89, 1958. [PubMed: 13571431]
124.
Banchero N. Capillary density of skeletal muscle in dogs exposed to simulated altitude (38556). Proc Soc Exp Biol Med 148: pp. 435–9, 1975. [PubMed: 1121492]
125.
Lundby C, Calbet JA, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci 66: pp. 3615–23, 2009. 10.1007/s00018-009-0146-8. [PubMed: 19756383] [CrossRef]
126.
Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol 91: pp. 1176–84, 2001. [PubMed: 11509513]
127.
Desaki J, Oki S, Matsuda Y, Sakanaka M. Morphological changes of capillaries in the rat soleus muscle following experimental tenotomy. J Electron Microsc (Tokyo) 49: pp. 185–93, 2000. [PubMed: 10791436]
128.
Oki S, Desaki J, Taguchi Y, Matsuda Y, Shibata T, Okumura H. Capillary changes with fenestrations in the contralateral soleus muscle of the rat following unilateral limb immobilization. J Orthop Sci 4: pp. 28–31, 1999. 10.1007/s007760050070. [PubMed: 9914426] [CrossRef]
129.
Jozsa L, Jarvinen M, Kvist M, Lehto M, Mikola A. Capillary density of tenotomized skeletal muscles. I. Experimental study in the rat. Eur J Appl Physiol Occup Physiol 44: pp. 175–81, 1980. [PubMed: 7190911]
130.
Jozsa L, Balint J, Reffy A, Jarvinen M, Kvist M. Capillary density of tenotomized skeletal muscles. II. Observations on human muscles after spontaneous rupture of tendon. Eur J Appl Physiol Occup Physiol 44: pp. 183–8, 1980. [PubMed: 7190912]
131.
Tyml K, Mathieu-Costello O, Cheng L, Noble EG. Differential microvascular response to disuse in rat hindlimb skeletal muscles. J Appl Physiol 87: pp. 1496–505, 1999. [PubMed: 10517784]
132.
Desplanches D, Kayar SR, Sempore B, Flandrois R, Hoppeler H. Rat soleus muscle ultrastructure after hindlimb suspension. J Appl Physiol 69: pp. 504–8, 1990. [PubMed: 2228859]
133.
Kano Y, Shimegi S, Takahashi H, Masuda K, Katsuta S. Changes in capillary luminal diameter in rat soleus muscle after hind-limb suspension. Acta Physiol Scand 169: pp. 271–6, 2000. 10.1046/j.1365-201x.2000.00743.x. [PubMed: 10951117] [CrossRef]
134.
Carry MR, Ringel SP, Starcevich JM. Distribution of capillaries in normal and diseased human skeletal muscle. Muscle Nerve 9: pp. 445–54, 1986. 10.1002/mus.880090510. [PubMed: 2941685] [CrossRef]
135.
Scelsi R. Morphometric analysis of skeletal muscle fibers and capillaries in mitochondrial myopathies. Pathol Res Pract 188: pp. 607–11, 1992. [PubMed: 1329053]
136.
Desplanches D, Mayet MH, Ilyina-Kakueva EI, Frutoso J, Flandrois R. Structural and metabolic properties of rat muscle exposed to weightlessness aboard Cosmos 1887. Eur J Appl Physiol Occup Physiol 63: pp. 288–92, 1991. 10.1007/BF00233864. [PubMed: 1761023] [CrossRef]
137.
Abou Salem EA, Saito K, Ishikawa H. Scanning electron microscopy of tenotomized soleus muscles of the rat. Arch Histol Cytol 56: pp. 49–63, 1993. [PubMed: 8499125]
138.
McLachlan EM. Atrophic effects of proximal tendon transection with and without denervation on mouse soleus muscles. Exp Neurol 81: pp. 651–68, 1983. 10.1016/0014-4886(83)90333-3. [PubMed: 6884475] [CrossRef]
139.
Nakagawa Y, Morii H, Totsuka M, Sato T, Hirota K. Changes in total fiber numbers of disused soleus muscle on rats. Ann Physiol Anthropol 9: pp. 15–20, 1990. [PubMed: 2143381]
140.
Prewitt RL, Chen IIH, Dowell R. Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Physiol 243: pp. H243–51, 1982. [PubMed: 7114235]
141.
Hutchins PM, Darnell AE. Observation of a decreased number of small arterioles in spontaneously hypertensive rats. Circ Res 34/35: pp. 161–5, 1974.
142.
Harper SL, Bohlen HG. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6: pp. 408–19, 1984. [PubMed: 6735460]
143.
Hansen-Smith FM, Greene AS, Cowley AW Jr, Lombard JH. Structural changes during microvascular rarefaction in chronic hypertension. Hypertension 15: pp. 922–8, 1990. [PubMed: 2351442]
144.
Hernández N, Torres SH, Finol HJ, Sosa A, Cierco M. Capillary and muscle fiber type changes in DOCA-salt hypertensive rats. Anat Rec 246: pp. 208–16, 1996. 10.1002/(SICI)1097-0185(199610)246:2<208::AID-AR7>3.0.CO;2-X. [PubMed: 8888962] [CrossRef]
145.
Suzuki K, Masawa N, Sakata N, Takatama M. Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J Stroke Cerebrovasc Dis 12: pp. 8–16, 2003. 10.1053/jscd.2003.1. [PubMed: 17903898] [CrossRef]
146.
Henrich HA, Romen W, Heimgärtner W, Hartung E, Bäumer F. Capillary rarefaction characteristic of the skeletal muscle of hypertensive patients. Klin Wochenschr 66: pp. 54–60, 1988. 10.1007/BF01713011. [PubMed: 3347005] [CrossRef]
147.
Hernández N, Torres SH, Finol HJ, Vera O. Capillary changes in skeletal muscle of patients with essential hypertension. Anat Rec 256: pp. 425–32, 1999. 10.1002/(SICI)1097-0185(19991201)256:4<425::AID-AR9>3.3.CO;2-O. [PubMed: 10589028] [CrossRef]
148.
Wolf S, Arend O, Schulte K, Ittel TH, Reim M. Quantification of retinal capillary density and flow velocity in patients with essential hypertension. Hypertension 23: pp. 464–7, 1994. [PubMed: 8144216]
149.
Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension 5: pp. 844–51, 1983. [PubMed: 6654450]
150.
Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension 33: pp. 998–1001, 1999. [PubMed: 10205237]
151.
Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension 34: pp. 655–8, 1999. [PubMed: 10523342]
152.
Short DS. The arteries of the small intestine in systemic hypertension. J Pathol Bacteriol 78: pp. 321–34, 1959. 10.1002/path.1700780202. [PubMed: 14446184] [CrossRef]
153.
Vilar J, Waeckel L, Bonnin P, Cochain C, Loinard C, Duriez M, Silvestre JS, Lévy BI. Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circ Res 103: pp. 761–9, 2008. 10.1161/CIRCRESAHA.108.182758. [PubMed: 18703778] [CrossRef]
154.
Hansen AH, Nielsen JJ, Saltin B, Hellsten Y. Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. J Hypertens 28: pp. 1176–85, 2010. 10.1097/HJH.0b013e3283379120. [PubMed: 20179634] [CrossRef]
155.
Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277: pp. R173–80, 1999. [PubMed: 10409271]
156.
Richardson RS, Newcomer SC, Noyszewski EA. Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: Response to graded exercise. J Appl Physiol 91: pp. 2679–85, 2001. [PubMed: 11717234]
157.
Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol 280: pp. C1367–74, 2001. [PubMed: 11350731]
158.
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 407: pp. 242–8, 2000. [PubMed: 11001067]
159.
Gu J-W, Adair TH. Hypoxia-induced expression of vascular endothelial growth factor is reversible in myocardial vascular smooth muscle cells. Am J Physiol 273: pp. H628–33, 1997. [PubMed: 9277477]
160.
Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol 280: pp. C1358–66, 2001. [PubMed: 11350730]
161.
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: pp. 843–5, 1992. 10.1038/359843a0. [PubMed: 1279431] [CrossRef]
162.
Tscheudschilsuren G, Aust G, Nieber K, Schilling N, Spanel-Borowski K. Microvascular endothelial cells differ in basal and hypoxia-regulated expression of angiogenic factors and their receptors. Microvasc Res 63: pp. 243–51, 2002. 10.1006/mvre.2001.2346. [PubMed: 11969301] [CrossRef]
163.
Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272: pp. 23659–67, 1997. [PubMed: 9295307]
164.
Waltenberger J, Mayr U, Pentz S, Hombach V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94: pp. 1647–54, 1996. [PubMed: 8840857]
165.
Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute and chronic hypoxia. J Clin Invest 95: pp. 1798–807, 1995. 10.1172/JCI117858. [PMC free article: PMC295709] [PubMed: 7706486] [CrossRef]
166.
Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, Leppanen P, Turunen MP, Markkanen JE, Arve K, Alhava E, Kauppinen RA, Yla-Herttuala S. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160: pp. 1393–403, 2002. [PMC free article: PMC1867222] [PubMed: 11943724]
167.
Khaliq A, Dunk C, Jiang J, Shams M, Li XF, Acevedo C, Weich H, Whittle M, Ahmed A. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab Invest 79: pp. 151–70, 1999. [PubMed: 10068204]
168.
Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: pp. 575–83, 2001. [PubMed: 11329059]
169.
Mandriota SJ, Pepper MS. Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83: pp. 852–9, 1998. [PubMed: 9776732]
170.
Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274: pp. 15732–9, 1999. 10.1074/jbc.274.22.15732. [PubMed: 10336473] [CrossRef]
171.
Mandriota SJ, Pyke C, Di Sanza C, Quinodoz P, Pittet B, Pepper MS. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 156: pp. 2077–89, 2000. [PMC free article: PMC1850070] [PubMed: 10854229]
172.
Abdulmalek K, Ashur F, Ezer N, Ye F, Magder S, Hussain SN. Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am J Physiol 281: pp. L582–90, 2001. [PubMed: 11504684]
173.
Pichiule P, LaManna JC. Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. J Appl Physiol 93: pp. 1131–9, 2002. [PubMed: 12183511]
174.
Loughna S, Sato TN. Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol 20: pp. 319–25, 2001. 10.1016/S0945-053X(01)00149-4. [PubMed: 11566266] [CrossRef]
175.
Chleboun JO, Martins RN. The development and enhancement of the collateral circulation in an animal model of lower limb ischemia. Aust N Z J Surg 64: pp. 202–7, 1994. 10.1111/j.1445-2197.1994.tb02179.x. [PubMed: 8117201] [CrossRef]
176.
Cohen MV, Vernon J, Yaghdjian V, Hatcher VB. Longitudinal changes in myocardial basic fibroblast growth factor (FGF-2) activity following coronary artery ligation in the dog. J Mol Cell Cardiol 26: pp. 683–90, 1994. 10.1006/jmcc.1994.1081. [PubMed: 8072023] [CrossRef]
177.
Endoh M, Pulsinelli WA, Wagner JA. Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Mol Brain Res 22: pp. 76–88, 1994. 10.1016/0169-328X(94)90034-5. [PubMed: 8015396] [CrossRef]
178.
Takami K, Iwane M, Kiyota Y, Miyamoto M, Tsukuda R, Shiosaka S. Increase of fibroblast growth factor immunoreactivity and its mRNA level in rat brain following transient forebrain ischemia. Exp Brain Res 90: pp. 1–10, 1992. 10.1007/BF00229250. [PubMed: 1521598] [CrossRef]
179.
Gu J-W, Santiago D, Olowe Y, Weinberger J. Basic fibroblast growth factor as a biochemical marker of exercise-induced ischemia. Circulation 95: pp. 1165–68, 1997. [PubMed: 9054845]
180.
Khalili K, Weinmann R. Actin mRNAs in LeLa cells: Stabilization after adenovirus infection. J Mol Biol 180: pp. 1007–21, 1984. [PubMed: 6527382]
181.
Falanga V, Qian SM, Danielpour D, Katz MH, Roberts AB, Sporn MB. Hypoxia upregulates the synthesis of TGF-β1 by human dermal fibroblasts. J Invest Dermatol 97: pp. 634–37, 1991. [PubMed: 1940433]
182.
Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89: pp. 1937–42, 2000. [PubMed: 11053346]
183.
Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91: pp. 173–82, 2001. [PubMed: 11408428]
184.
Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S, Yu A. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann N Y Acad Sci 874: pp. 262–8, 1999. [PubMed: 10415537]
185.
Semenza GL. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol Med 7: pp. 345–50, 2001. [PubMed: 11516994]
186.
Semenza GL. Surviving ischemia: Adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106: pp. 809–12, 2000. [PMC free article: PMC381427] [PubMed: 11018065]
187.
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E, Keshet E. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: pp. 485–90, 1998. [PubMed: 9697772]
188.
Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12: pp. 149–62, 1998. [PMC free article: PMC316445] [PubMed: 9436976]
189.
Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17: pp. 3005–15, 1998. [PMC free article: PMC1170640] [PubMed: 9606183]
190.
Palmer LA, Semenza GL, Stoler MH, Johns RA. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 274: pp. L212–9, 1998. [PubMed: 9486205]
191.
Jung F, Palmer LA, Zhou N, Johns RA. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86: pp. 319–25, 2000. [PubMed: 10679484]
192.
Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: pp. 1683–93, 1995. 10.1084/jem.182.6.1683. [PMC free article: PMC2192245] [PubMed: 7500013] [CrossRef]
193.
Ghafar MA, Anastasiadis AG, Olsson LE, Chichester P, Kaplan SA, Buttyan R, Levin RM. Hypoxia and an angiogenic response in the partially obstructed rat bladder. Lab Invest 82: pp. 903–9, 2002. [PubMed: 12118092]
194.
Wu P, Yonekura H, Li H, Nozaki I, Tomono Y, Naito I, Ninomiya Y, Yamamoto H. Hypoxia down-regulates endostatin production by human microvascular endothelial cells and pericytes. Biochem Biophys Res Commun 288: pp. 1149–54, 2001. 10.1006/bbrc.2001.5903. [PubMed: 11700031] [CrossRef]
195.
Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M, Feige JJ, Pepper MS, Van Meir EG. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191: pp. 1789–98, 2000. 10.1084/jem.191.10.1789. [PMC free article: PMC2193158] [PubMed: 10811871] [CrossRef]
196.
Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp AM, Yun Z, Denko NC, Giaccia AJ. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res 6: pp. 2941–50, 2000. [PubMed: 10914744]
197.
Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: pp. 843–5, 1992. 10.1038/359843a0. [PubMed: 1279431] [CrossRef]
198.
Brogi E, Schatteman G, Wu T, Kim EA, Varticovski L, Keyt B, Isner JM. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97: pp. 469–76, 1997. 10.1172/JCI118437. [PMC free article: PMC507039] [PubMed: 8567969] [CrossRef]
199.
Minchenko A, Salceda S, Bauer T, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71: pp. 374–79, 1994. [PubMed: 7933988]
200.
Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276: pp. H679–85, 1999. [PubMed: 9950871]
201.
Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19: pp. 1009–11, 2005. 10.1096/fj.04-2304fje. [PubMed: 15811877] [CrossRef]
202.
Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342: pp. 626–33, 2000. [PubMed: 10699162]
203.
Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischemia in rat brain. Eur J Neurosci 11: pp. 1–12, 1999. 10.1046/j.1460-9568.1999.00845.x. [PubMed: 10594641] [CrossRef]
204.
Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156: pp. 965–76, 2000. [PMC free article: PMC1876841] [PubMed: 10702412]
205.
Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL, Campochiaro PA. Hypoxia inducible factor-1alpha is increased in ischemic retina: Temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40: pp. 182–9, 1999. [PubMed: 9888442]
206.
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29: pp. 625–34, 2010. 10.1038/onc.2009.441. [PMC free article: PMC2969168] [PubMed: 19946328] [CrossRef]
207.
Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier, 2006.
208.
Hang J, Kong L, Gu JW, Adair TH. VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. Am J Physiol 269: pp. H1827–31, 1995. [PubMed: 7503283]
209.
Dawson JM, Hudlická O. The effect of long-term activity on the microvasculature of rat glycolytic skeletal muscle. Int J Microcirc Clin Exp 8: pp. 53–69, 1989. [PubMed: 2722411]
210.
Hudlická O, Price S. The role of blood flow and/or muscle hypoxia in capillary growth in chronically stimulated fast muscles. Pflügers Arch 417: pp. 67–72, 1990. 10.1007/BF00370770. [PubMed: 1705700] [CrossRef]
211.
Hang J, Fleming JB, Wells ML, Adair TH. Miniaturized electrical stimulator with controllable duty cycles. Am J Physiol 268: pp. H1373–8, 1995. [PubMed: 7900890]
212.
Skorjanc D, Jaschinski F, Heine G, Pette D. Sequential increases in capillarization and mitochondrial enzymes in low-frequency-stimulated rabbit muscle. Am J Physiol 274: pp. C810–8, 1998. [PubMed: 9530113]
213.
Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol 284: pp. H1668–78, 2003. [PubMed: 12543634]
214.
Richardson RS, Wagner H, Mudaliar SR, Saucedo E, Henry R, Wagner PD. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol 279: pp. H772–8, 2000. [PubMed: 10924077]
215.
Kuo NT, Benhayon D, Przybylski RJ, Martin RJ, LaManna JC. Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. J Appl Physiol 86: pp. 260–4, 1999. [PubMed: 9887138]
216.
Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92: pp. 905–9, 1995. 10.1073/pnas.92.3.905. [PMC free article: PMC42729] [PubMed: 7846076] [CrossRef]
217.
Adair TH. Growth regulation of the vascular system: An emerging role for adenosine. Am J Physiol 289: pp. R283–96, 2005. 10.1152/ajpregu.00840.2004. [PubMed: 16014444] [CrossRef]
218.
Berne RM. Cardiac nucleotides in hypoxia: Possible role in regulation of coronary blood flow. Am J Physiol 204: pp. 317–22, 1963. [PubMed: 13971060]
219.
Berne RM, Knabb RM, Ely SW, Rubio R. Adenosine in the local regulation of blood flow: A brief overview. Fed Proc 42: pp. 3136–42, 1983. [PubMed: 6641949]
220.
Marshall JM. Roles of adenosine and nitric oxide in skeletal muscle in acute and chronic hypoxia. Adv Exp Med Biol 502: pp. 349–63, 2001. [PubMed: 11950149]
221.
Belardinelli L, Vogel S, Linden J, Berne RM. Antiadrenergic action of adenosine on ventricular myocardium in embryonic chick hearts. J Mol Cell Cardiol 14: pp. 291–4, 1982. 10.1016/0022-2828(82)90207-3. [PubMed: 6290675] [CrossRef]
222.
Dobson JG Jr, Fenton RA. Adenosine A2 receptor function in rat ventricular myocytes. Cardiovasc Res 34: pp. 337–47, 1997. 10.1016/S0008-6363(97)00023-0. [PubMed: 9205548] [CrossRef]
223.
Miyazaki K, Komatsu S, Ikebe M, Fenton RA, Dobson JG Jr. Protein kinase Cepsilon and the antiadrenergic action of adenosine in rat ventricular myocytes. Am J Physiol 287: pp. H1721–9, 2004. [PubMed: 15205171]
224.
Romano FD, Naimi TS, Dobson JG Jr. Adenosine attenuation of catecholamine-enhanced contractility of rat heart in vivo. Am J Physiol 260: pp. H1635–9, 1991. [PubMed: 2035682]
225.
Ethier MF, Chwander V, Dobson JG Jr. Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 265: pp. H131–8, 1993. [PubMed: 8342624]
226.
Grant MB, Davis MI, Caballero S, Feoktistov I, Biaggioni I, Belardinelli L. Proliferation, migration, and ERK activation in human retinal endothelial cells through A2B adenosine receptor stimulation. Invest Ophthalmol Vis Sci 42: pp. 2068–73, 2001. [PubMed: 11481274]
227.
Grant MB, Tarnuzzer RW, Caballero S, Ozeck MJ, Davis MI, Spoerri PE, Feoktistov I, Biaggioni I, Shryock JC, Belardinelli L. Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res 85: pp. 699–706, 1999. [PubMed: 10521243]
228.
Gu JW, Ito BR, Sartin A, Frascogna N, Moore M, Adair TH. Inhibition of adenosine kinase induces expression of VEGF mRNA and protein in myocardial myoblasts. Am J Physiol 279: pp. H2116–23, 2000. [PubMed: 11045944]
229.
Lutty GA, Mathews MK, Merges C, McLeod DS. Adenosine stimulates canine retinal microvascular endothelial cell migration and tube formation. Curr Eye Res 17: pp. 594–607, 1998. 10.1076/ceyr.17.6.594.5173; 10.1080/02713689808951232. [PubMed: 9663849] [CrossRef] [CrossRef]
230.
Meininger CJ, Schelling ME, Granger HJ. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 255: pp. H554–62, 1988. [PubMed: 3414822]
231.
Teuscher E, Weidlich V. Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomed Biochim Acta 44: pp. 493–5, 1985. [PubMed: 4004845]
232.
Sexl V, Mancusi G, Holler C, Gloria-Maercker E, Schutz W, Freissmuth M. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J Biol Chem 272: pp. 5792–9, 1997. [PubMed: 9038193]
233.
Adair TH, Montani JP, Strick DM, Guyton AC. Vascular development in chick embryos: A possible role for adenosine. Am J Physiol 256: pp. H240–6, 1989. [PubMed: 2463773]
234.
Adolfsson J. The time dependence of training-induced increase in skeletal muscle capillarization and the spatial capillary to fibre relationship in normal and neovascularized skeletal muscle of rats. Acta Physiol Scand 128: pp. 259–66, 1986. 10.1111/j.1748-1716.1986.tb07974.x. [PubMed: 2430430] [CrossRef]
235.
Adair TH, Cotten R, Gu JW, Pryor JS, Bennett KR, McMullan MR, McDonnell P, Montani JP. Adenosine infusion increases plasma levels of VEGF in humans. BMC Physiol 5: p. 10, 2005. [PMC free article: PMC1183224] [PubMed: 15967042]
236.
Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I. Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation. Circ Res 90: pp. 531–8, 2002. 10.1161/01.RES.0000012203.21416.14. [PubMed: 11909816] [CrossRef]
237.
Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I. Mast cell mediated stimulation of angiogenesis: Cooperative interaction between A2B and A3 adenosine receptors. Circ Res 92: pp. 485–92, 2003. 10.1161/01.RES.0000061572.10929.2D. [PubMed: 12600879] [CrossRef]
238.
Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D, Biaggioni I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44: pp. 649–54, 2004. 10.1161/01.HYP.0000144800.21037.a5. [PubMed: 15452028] [CrossRef]
239.
Fischer S, Sharma HS, Karliczek GF, Schaper W. Expression of vascular permeability factor/vascular endothelial growth factor in pig cerebral microvascular endothelial cells and its upregulation by adenosine. Brain Res Mol Brain Res 28: pp. 141–8, 1995. 10.1016/0169-328X(94)00193-I. [PubMed: 7707868] [CrossRef]
240.
Gu JW, Brady AL, Anand V, Moore MC, Kelly WC, Adair TH. Adenosine upregulates VEGF expression in cultured myocardial vascular smooth muscle cells. Am J Physiol 277: pp. H595–602, 1999. [PubMed: 10444484]
241.
Hashimoto E, Kage K, Ogita T, Nakaoka T, Matsuoka R, Kira Y. Adenosine as an endogenous mediator of hypoxia for induction of vascular endothelial growth factor mRNA in U-937 cells. Biochem Biophys Res Commun 204: pp. 318–24, 1994. 10.1006/bbrc.1994.2462. [PubMed: 7945378] [CrossRef]
242.
Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP. Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37: pp. 2165–76, 1996. [PubMed: 8843903]
243.
Auchampach JA. Adenosine receptors and angiogenesis. Circ Res 101: pp. 1075–7, 2007. 10.1161/CIRCRESAHA.107.165761. [PMC free article: PMC2399891] [PubMed: 18040023] [CrossRef]
244.
Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ, Sullivan GW, Linden J, Tucker AL. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 101: pp. 1130–8, 2007. 10.1161/CIRCRESAHA.107.150110. [PubMed: 17901362] [CrossRef]
245.
De Ponti C, Carini R, Alchera E, Nitti MP, Locati M, Albano E, Cairo G, Tacchini L. Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. J Leukoc Biol 82: pp. 392–402, 2007. 10.1189/jlb.0107060. [PubMed: 17505024] [CrossRef]
246.
Alchera E, Tacchini L, Imarisio C, Dal Ponte C, De Ponti C, Gammella E, Cairo G, Albano E, Carini R. Adenosine-dependent activation of hypoxia-inducible factor-1 induces late preconditioning in liver cells. Hepatology 48: pp. 230–9, 2008. 10.1002/hep.22249. [PubMed: 18506850] [CrossRef]
247.
Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20: pp. 2242–50, 2006. 10.1096/fj.06-6419com. [PubMed: 17077301] [CrossRef]
248.
Minamino T, Kitakaze M, Morioka T, Node K, Komamura K, Takeda H, Inoue M, Hori M, Kamada T. Cardioprotection due to preconditioning correlates with increased ecto-5-nucleotidase activity. Am J Physiol 270: pp. H238–44, 1996. [PubMed: 8769757]
249.
Braun N, Lenz C, Gillardon F, Zimmermann M, Zimmermann H. Focal cerebral ischemia enhances glial expression of ecto-5-nucleotidase. Brain Res 766: pp. 213–26, 1997. 10.1016/S0006-8993(97)00559-3. [PubMed: 9359605] [CrossRef]
250.
Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP. Ecto-5-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110: pp. 993–1002, 2002. [PMC free article: PMC151145] [PubMed: 12370277]
251.
Takagi H, King GL, Ferrara N, Aiello LP. Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 37: pp. 1311–21, 1996. [PubMed: 8641834]
252.
Montesinos MC, Shaw JP, Yee H, Shamamian P, Cronstein BN. Adenosine A2A receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol 164: pp. 1887–92, 2004. [PMC free article: PMC1615751] [PubMed: 15161625]
253.
Sugano M, Tsuchida K, Makino N. Intramuscular gene transfer of soluble tumor necrosis factor-alpha receptor 1 activates vascular endothelial growth factor receptor and accelerates angiogenesis in a rat model of hindlimb ischemia. Circulation 109: pp. 797–802, 2004. [PubMed: 14970118]
254.
Rivilis I, Milkiewicz M, Boyd P, Goldstein J, Brown MD, Egginton S, Hansen FM, Hudlicka O, Haas TL. Differential involvement of MMP-2 and VEGF during muscle stretch- vs. shear stress-induced angiogenesis. Am J Physiol Heart Circ Physiol 283: pp. H1430–8, 2002. [PubMed: 12234794]
255.
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 23: pp. 23–31, 2008. [PubMed: 18268362]
256.
Benos DJ, Stanton BA. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520: pp. 631–44, 1999. 10.1111/j.1469-7793.1999.00631.x. [PMC free article: PMC2269617] [PubMed: 10545131] [CrossRef]
257.
Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 82: pp. 735–67, 2002. [PubMed: 12087134]
258.
Garty H, Palmer LG. Epithelial sodium channels: Function, structure, and regulation. Physiol Rev 77: pp. 359–96, 1997. [PubMed: 9114818]
259.
Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S. Receptor that leaves a sour taste in the mouth. Nature 395: pp. 555–6, 1998. [PubMed: 9783580]
260.
Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32: pp. 1071–83, 2001. 10.1016/S0896-6273(01)00547-5. [PubMed: 11754838] [CrossRef]
261.
Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: pp. 1007–11, 2000. [PubMed: 11069180]
262.
Mano I, Driscoll M. DEG/ENaC channels: A touchy superfamily that watches its salt. Bioessays 21: pp. 568–78, 1999. 10.1002/(SICI)1521-1878(199907)21:7<568::AID-BIES5>3.0.CO;2-L. [PubMed: 10472184] [CrossRef]
263.
Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: pp. 463–7, 1994. 10.1038/367463a0. [PubMed: 8107805] [CrossRef]
264.
Garcia-Anoveros J, Corey DP. The molecules of mechanosensation. Annu Rev Neurosci 20: pp. 567–94, 1997. 10.1146/annurev.neuro.20.1.567. [PubMed: 9056725] [CrossRef]
265.
McDonald FJ, Snyder PM, McCray PB, Welsh MJ. Cloning expression, and tissue distribution of a human amiloride-sensitive Na+ channel. Am J Physiol 266: pp. L728–34, 1994. [PubMed: 8023962]
266.
Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270: pp. 27411–4, 1995. [PubMed: 7499195]
267.
Bangel-Ruland N, Sobczak K, Christmann T, Kentrup D, Langhorst H, Kusche-Vihrog K, Weber WM. Characterization of the epithelial sodium channel delta-subunit in human nasal epithelium. Am J Respir Cell Mol Biol 42: pp. 498–505, 2010. [PubMed: 19520916]
268.
Adams CM, Snyder PM, Welsh MJ. Interactions between subunits of the human epithelial sodium channel. J Biol Chem 272: pp. 27295–300, 1997. 10.1074/jbc.272.43.27295. [PubMed: 9341177] [CrossRef]
269.
Bonny O, Chraibi A, Loffing J, Jaeger NF, Grunder S, Horisberger JD, Rossier BC. Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the pore-forming region of its α-subunit. J Clin Invest 104: pp. 967–74, 1999. 10.1172/JCI6821. [PMC free article: PMC408554] [PubMed: 10510337] [CrossRef]
270.
McDonald FJ, Price MP, Snyder PM, Welsh MJ. Cloning and expression of the β- and y-subunits of the human epithelial sodium channel. Am J Physiol Cell Physiol 268: Cl 157–163, 1995. [PubMed: 7762608]
271.
Pérez FR, Venegas F, González M, Andrés S, Vallejos C, Riquelme G, Sierralta J, Michea L. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. Hypertension 53: pp. 1000–7, 2009. 10.1161/HYPERTENSIONAHA.108.128520. [PubMed: 19398659] [CrossRef]
272.
Drummond HA, Gebremedin D, Harder DR. Degenerm/epithelial Na channel proteins: Components of a vascular mechanosensor. Hypertension 44: pp. 643–8, 2004. [PubMed: 15381679]
273.
Jernigan NL, Drammond HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289: pp. F891–901, 2005. 10.1152/ajprenal.00019.2005. [PubMed: 15914781] [CrossRef]
274.
Jernigan NL, LaMarca B, Speed J, Galmiche L, Granger JP, Drummond HA. Dietary salt enhances benzamil-sensitive component of myogenic constriction in mesenteric arteries. Am J Physiol Heart Circ Physiol 294: pp. H409–20, 2008. [PubMed: 18024548]
275.
Jernigan NL, Drammond HA. Myogenic vasoconstriction in mouse renal interlobar arteries: Role of endogenous beta and gammaENaC. Am J Physiol Renal Physiol 291: pp. Fl184–91, 2006. [PubMed: 16849693]
276.
Grifoni SC, Gannon KP, Stec DE, Drammond HA. ENaC proteins contribute to VSMC migration. Am J Physiol Heart Circ Physiol 291: pp. H3076–86, 2006. 10.1152/ajpheart.00333.2006. [PubMed: 16844921] [CrossRef]
277.
Drummond HA, Welsh MJ, Abboud FM. ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci 940: pp. 42–7, 2001. [PubMed: 11458698]
278.
Guan Z, Pollock JS, Cook AK, Hobbs JL, Inscho EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension 54: pp. 1062–9, 2009. 10.1161/HYPERTENSIONAHA.109.137992. [PMC free article: PMC2766010] [PubMed: 19720952] [CrossRef]
279.
Kusche-Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): Mediator of the aldosterone response in the vascular endothelium? Steroids, 2009 Sep 22. [Epub ahead of print] [PubMed: 19778545]
280.
Golestaneh N, Klein C, Valamanesh F, Suarez G, Agarwal MK, Mirshahi M. Mineralocorticoid receptor-mediated signaling regulates the ion gated sodium channel in vascular endothelial cells and requires an intact cytoskeleton. Biochem Biophys Res Commun 280: pp. 1300–6, 2001. 10.1006/bbrc.2001.4275. [PubMed: 11162670] [CrossRef]
281.
Oberleithner H, Riethmuller C, Ludwig T, Shahin V, Stock C, Schwab A, et al. Differential action of steroid hormones on human endothelium. J Cell Sci 119: pp. 1926–32, 2006. 10.1242/jcs.02886. [PubMed: 16636077] [CrossRef]
282.
Wang S, Meng F, Mohan S, Champaneri B, Gu Y. Functional ENaC channels expressed in endothelial cells: A new candidate for mediating shear force. Microcirculation 16: pp. 276–87, 2009. 10.1080/10739680802653150. [PubMed: 19225981] [CrossRef]
283.
Emtage L, Gu G, Hartwieg E, Chalfie M. Extracellular proteins organize the mechanosensory channel complex in C. Elegans touch receptor neurons. Neuron 44: pp. 795–807, 2004. 10.1016/j.neuron.2004.11.010. [PubMed: 15572111] [CrossRef]
284.
O’Hagan R, Chalfie M, Goodman MB. The MEC-4 DEG/ENaCchannel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8: pp. 43–50, 2005. [PubMed: 15580270]
285.
Syntichaki P, Tavernarakis N. Genetic models of mechanotransduction: The nematode Caenorhabditis elegans. Physiol Rev 84: pp. 1097–53, 2004. 10.1152/physrev.00043.2003. [PubMed: 15383649] [CrossRef]
286.
Welsh MJ, Price MP, Xie J. Biochemical basis of touch perception: Mechanosensory function of degenerin/epithelial Na+ channels. J Biol Chem 277: pp. 2369–72, 2002. 10.1074/jbc.R100060200. [PubMed: 11706013] [CrossRef]
287.
Ismailov II, Berdiev BK, Shlyonsky VG, Benos DJ. Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: Release from Ca2+ block. Biophys J 72: pp. 1182–92, 1997. 10.1016/S0006-3495(97)78766-6. [PMC free article: PMC1184502] [PubMed: 9138565] [CrossRef]
288.
Satlin LM, Sheng S,Woda CB, Kleyman TR. Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 280: pp. F1010–18, 2001. [PubMed: 11352841]
289.
Althaus M, Bogdan R, Clauss WG, Fronius M. Mechano-sensitivity of epithelial sodium channels (ENaCs): Laminar shear stress increases ion channel open probability. FASEB J 21: pp. 2389–99, 2007. 10.1096/fj.06-7694com. [PubMed: 17426066] [CrossRef]
290.
Mazzochi C, Bubien JK, Smith PR, Benos DJ. The carboxyl terminus of the α-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281: pp. 6528–38, 2006. [PubMed: 16356937]
291.
Jovov B, Tousson A, Ji HL, Keeton D, Shlyonsky V, Ripoll PJ, Fuller CM, Benos DJ. Regulation of epithelial Na+ channels by actin in planar lipid bilayers and in the Xenopus oocyte expression system. J Biol Chem 274: pp. 37845–54, 1999. 10.1074/jbc.274.53.37845. [PubMed: 10608849] [CrossRef]
292.
Copeland SJ, Berdiev BK, Ji HL, Lockhart J, Parker S, Fuller CM, Benos DJ. Regions in the carboxy terminus of α-bENaC involved in gating and functional effects of actin. Am J Physiol Cell Physiol 281: pp. C231–40, 2001. [PubMed: 11401846]
293.
Drummond HA, Abboud FM, Welsh MJ. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884: pp. 1–12, 2000. [PubMed: 11082481]
294.
Drummond HA, Price MP, Welsh MJ, Abboud FM. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21: pp. 1435–41, 1998. 10.1016/S0896-6273(00)80661-3. [PubMed: 9883735] [CrossRef]
295.
Yamamoto Y, Taniguchi K. Expression of ENaC subunits in sensory nerve endings in the rat larynx. Neurosci Lett 402: pp. 227–32, 2006. 10.1016/j.neulet.2006.04.044. [PubMed: 16725259] [CrossRef]
296.
Fricke B, Lints R, Stewart G, Drummond H, Dodt G, Driscoll M, von During M. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res 299: pp. 327–34, 2000. 10.1007/s004410050031; 10.1007/s004419900153. [PubMed: 10772247] [CrossRef] [CrossRef]
297.
Simon A, Shenton F, Hunter I, Banks RW, Bewick GS. Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 588: pp. 171–85, 2010. 10.1113/jphysiol.2009.182683. [PMC free article: PMC2821557] [PubMed: 19917568] [CrossRef]
298.
Fronius M, Clauss WG. Mechano-sensitivity of ENaC: May the (shear) force be with you. Pflügers Arch 455: pp. 775–85, 2008. 10.1007/s00424-007-0332-1. [PubMed: 17874325] [CrossRef]
299.
Carattino MD, Liu W, Hill WG, Satlin LM, Kleyman TR. Lack of a role of membrane-protein interactions in flow-dependent activation of ENaC. Am J Physiol Renal Physiol 293: pp. F316–24, 2007. [PubMed: 17459954]
300.
Wang S, Meng F, Mohan S, Champaneri B, Gu Y. Functional ENaC channels expressed in endothelial cells: A new candidate for mediating shear force. Microcirculation 16: pp. 276–87, 2009. 10.1080/10739680802653150. [PubMed: 19225981] [CrossRef]
301.
VanLandingham LG, Gannon KP, Drummond HA. Pressure-induced constriction is inhibited in a mouse model of reduced betaENaC. Am J Physiol Regul Integr Comp Physiol 297: pp. R723–8, 2009. [PMC free article: PMC2739788] [PubMed: 19553501]
302.
Drummond HA. Yes, no, maybe so: ENaC proteins as mediators of renal myogenic constriction. Hypertension 54: pp. 962–3, 2009. 10.1161/HYPERTENSIONAHA.109.139014. [PMC free article: PMC2774932] [PubMed: 19720950] [CrossRef]
303.
Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 64: pp. 885–97, 2009. 10.1016/j.neuron.2009.11.007. [PMC free article: PMC2807410] [PubMed: 20064394] [CrossRef]
304.
Grifoni SC, Chiposi R, McKey SE, Ryan MJ, Drummond HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am J Physiol Renal Physiol 298: pp. F285–92, 2010. [PMC free article: PMC2822522] [PubMed: 19889952]
305.
Adair TH, Drummond HA. Benzamil decreases microvessel growth in rat aortic rings in vitro. FASEB J 23: p. 625.3, 2009.
306.
Adair TH, Drummond HA. A role for βENaC protein in microvessel formation. FASEB J 24: p. 1031.5, 2010.
307.
Kawasaki S, Mori M, Awai M. Capillary growth of rat aortic segments cultured in collagen gel without serum. Acta Pathol Jpn 39: pp. 712–8, 1989. 10.1111/j.1440-1827.1989.tb02419.x. [PubMed: 2482651] [CrossRef]
308.
Nicosia RF, Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: A comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26: pp. 119–28, 1990. 10.1007/BF02624102. [PubMed: 1690206] [CrossRef]
309.
Nicosia RF, Bonanno E, Villaschi S. Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Atherosclerosis 95: pp. 191–9, 1992. 10.1016/0021-9150(92)90022-9. [PubMed: 1384519] [CrossRef]
310.
Galbraith CG, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40: pp. 317–30, 1998. 10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.3.CO;2-I; 10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.0.CO;2-8. [PubMed: 9712262] [CrossRef] [CrossRef]
311.
Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89: pp. 481–534, 2009. 10.1152/physrev.00042.2007. [PubMed: 19342613] [CrossRef]
312.
Wang S, Meng F, Mohan S, Champaneri B, Gu Y. Functional ENaC channels expressed in endothelial cells: A new candidate for mediating shear force. Microcirculation 16: pp. 276–87, 2009. 10.1080/10739680802653150. [PubMed: 19225981] [CrossRef]
313.
Fronius M, Bogdan R, Althaus M, Morty RE, Clauss WG. Epithelial Na+ channels derived from human lung are activated by shear force. Respir Physiol Neurobiol 170: pp. 113–9, 2010. 10.1016/j.resp.2009.11.004. [PubMed: 19925887] [CrossRef]
314.
Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291: pp. F663–9, 2006. 10.1152/ajprenal.00514.2005. [PubMed: 16638910] [CrossRef]
315.
Thoma R. Untersuchungen uber die Histogenese und Histomechanik des Gefaesssystems. Stuttgart, Germany: Verlag von Ferdinand Enke, 1893.
316.
Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64: pp. 251–99, 1939. 10.1002/aja.1000640203. [CrossRef]
317.
Guyton JR, Hartley CJ. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am J Physiol 248: pp. H540–6, 1985. [PubMed: 3885757]
318.
Holman E. Problems in the dynamics of blood flow. I. Conditions controlling collateral circulation in the presence of an arteriovenous fistula, following the ligation of an artery. Surgery St. Louis 26: pp. 889–917, 1949. [PubMed: 15395857]
319.
Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239: pp. H14–21, 1980. [PubMed: 7396013]
320.
Langille BL, Bendeck MP, Keeley FW. Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol 256: pp. H931–9, 1989. [PubMed: 2705563]
321.
Prior BM, Yang HT, Terjung RL. What makes blood vessels growth with exercise training? J Appl Physiol 97: pp. 1119–28, 2004. [PubMed: 15333630]
322.
Zhou A, Egginton S, Hudlická O, Brown MD. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res 293: pp. 293–303, 1998. [PubMed: 9662652]
323.
Dawson JM, Hudlická O. The effects of long term administration of prazosin on the microcirculation in skeletal muscles. Cardiovasc Res 23: pp. 913–20, 1989. 10.1093/cvr/23.11.913. [PubMed: 2611800] [CrossRef]
324.
Egginton S, Zhou AL, Brown MD, Hudlická O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49: pp. 634–46, 2001. 10.1016/S0008-6363(00)00282-0. [PubMed: 11166277] [CrossRef]
325.
Price RJ, Skalak TC. Chronic alpha1-adrenergic blockade stimulates terminal and arcade arteriolar development. Am J Physiol 271: pp. H752–9, 1996. [PubMed: 8770119]
326.
Tuttle JL, Nachreiner RD, Bhuller AS, Condict KW, Connors BA, Herring BP, Dalsing MC, Unthank JL. Shear level influences resistance artery remodeling: Wall dimension, cell density, and eNOS expression. Am J Physiol 281: pp. H1380–89, 2001. [PubMed: 11514310]
327.
Ziada A, Hudlická O, Tyler KR. The effect of long-term administration of alpha1-blocker prazosin on capillary density in cardiac and skeletal muscle. Pflügers Arch 415: pp. 355–60, 1989. [PubMed: 2622763]
328.
Williams JL, Cartland D, Rudge JS, Egginton S. VEGF trap abolishes shear stress- and overload dependent angiogenesis in skeletal muscle. Microcirculation 13: pp. 499–509, 2006. 10.1080/10739680600785717. [PubMed: 16864416] [CrossRef]
329.
Wang Y, Chang JM, Li YC, Li YS, Shyy JY, and Chien S. Shear stress and VEGF activate IKK via Flk-1/Cbl/Akt signaling pathway. Am J Physiol Heart 286: pp. H685–92, 2004. 10.1152/ajpheart.00237.2003. [PubMed: 14551058] [CrossRef]
330.
Folkman J, Moscona A. Role of cell shape in growth control. Nature 273: pp. 345–9, 1978. 10.1038/273345a0. [PubMed: 661946] [CrossRef]
331.
Ingber DE, Madri JA, Folkman J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev Biol 23: pp. 387–94, 1987. 10.1007/BF02620997. [PubMed: 2438264] [CrossRef]
332.
Stromberg DD, Phelps PC, Rushmer RF, Luft JH. An index for quantitative measurement of vasoconstriction in histologic sections of blood vessels. Vasc Surg 3: pp. 68–80, 1969. 10.1177/153857446900300204. [PubMed: 5792529] [CrossRef]
333.
Coleman TG, Granger HJ, Guyton AC. Whole-body circulatory autoregulation and hypertension. Circ Res 28: pp. 76–87, 1971. [PubMed: 5568235]
334.
Uhley NH. Role of pulmonary lymphatics in chronic pulmonary edema. Circ Res 11: pp. 966–70, 1962. [PubMed: 13995239]
335.
Boardman KC, Swartz MS. Interstitial flow as a guide for lymphangiogenesis. Circ Res 92: pp. 801–8, 2003. 10.1161/01.RES.0000065621.69843.49. [PubMed: 12623882] [CrossRef]
336.
Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: pp. 1423–5, 1997. 10.1126/science.276.5317.1423. [PubMed: 9162011] [CrossRef]
337.
Goldman J, Conley KA, Raehl A, Bondy DM, Pytowski B, Swartz MA, Rutkowski JM, Jaroch DB, Ongstad EL. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol 292: pp. H2176–83, 2007. 10.1152/ajpheart.01011.2006. [PubMed: 17189348] [CrossRef]
338.
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Müller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15: pp. 545–52, 2009. 10.1038/nm.1960. [PubMed: 19412173] [CrossRef]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53239

Views

Related Items in Bookshelf

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...