NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Rumbaut RE, Thiagarajan P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis

Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis.

Show details

References

  1. Chen J and Lopez JA. Interactions of platelets with subendothelium and endothelium. Microcirculation 12, 2005. [PubMed: 15814433] [Cross Ref]
  2. Bizzozero J. Ueber einen neuen formbestandtheil des blutes und dessen rolle bei der thrombose und der blutgerinnung. Virchows Arch Pathol Anat Physiol Klinishe Medicine 90: 261–332, 1882. [Cross Ref]
  3. Hanson SR and Slichter SJ. Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood 66: 1105–1109, 1985. [PubMed: 4052629]
  4. Spaet TH. Progress in Hemostasis and Thrombosis. Volume 2. New York: Grune & Stratton, 1974.
  5. White JG. Electron opaque structures in human platelets: which are or are not dense bodies? Platelets 19: 455–466, 2008. [PubMed: 18925514] [Cross Ref]
  6. Slichter SJ. Relationship between platelet count and bleeding risk in thrombocytopenic patients. Transfus Med Rev 18: 153–167, 2004. [PubMed: 15248165] [Cross Ref]
  7. White JG, Krumwiede MD, Escolar G. Glycoprotein Ib is homogeneously distributed on external and internal membranes of resting platelets. Am J Pathol 155: 2127–2134, 1999. [PMC free article: PMC1866942] [PubMed: 10595941] [Cross Ref]
  8. White JG and Clawson CC. The surface-connected canalicular system of blood platelets–a fenestrated membrane system. Am J Pathol 101: 353–364, 1980. [PMC free article: PMC1903614] [PubMed: 7435543]
  9. Rendu F and Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12: 261–273, 2001. [PubMed: 11487378] [Cross Ref]
  10. Ebbeling L, Robertson C, McNicol A, Gerrard JM. Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood 80: 718–723, 1992. [PubMed: 1322202]
  11. Blair P and Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23: 177–189, 2009. [PMC free article: PMC2720568] [PubMed: 19450911] [Cross Ref]
  12. Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5: 1945–1955, 2007. [PubMed: 17723134] [Cross Ref]
  13. Italiano JE, Jr., Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111: 1227–1233, 2008. [PMC free article: PMC2214735] [PubMed: 17962514]
  14. Sehgal S and Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 5: 2009–2016, 2007. [PubMed: 17650077] [Cross Ref]
  15. Stenberg PE, Shuman MA, Levine SP, Bainton DF. Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 98: 748–760, 1984. [PMC free article: PMC2113120] [PubMed: 6229546] [Cross Ref]
  16. Morgenstern E, Neumann K, Patscheke H. The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 43: 273–282, 1987. [PubMed: 3595636]
  17. Flaumenhaft R. Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23: 1152–1160, 2003. [PubMed: 12738684] [Cross Ref]
  18. Lemons PP, Chen D, Bernstein AM, Bennett MK, Whiteheart SW. Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery. Blood 90: 1490–1500, 1997. [PubMed: 9269766]
  19. Merten M and Thiagarajan P. P-selectin in arterial thrombosis. Z Kardiol 93: 855–863, 2004. [PubMed: 15568145] [Cross Ref]
  20. Nurden AT and Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 21: 21–36, 2007. [PubMed: 16442192] [Cross Ref]
  21. Chen D, Bernstein AM, Lemons PP, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 95: 921–929, 2000. [PubMed: 10648404]
  22. Huizing M, Anikster Y, Gahl WA. Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: disorders of vesicle formation and trafficking. Thromb Haemost 86: 233–245, 2001. [PubMed: 11487012]
  23. Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19: 19–42, 2006. [PubMed: 16420244] [Cross Ref]
  24. Li W, Rusiniak ME, Chintala S, Gautam R, Novak EK, Swank RT. Murine Hermansky-Pudlak syndrome genes: regulators of lysosome-related organelles. Bioessays 26: 616–628, 2004. [PubMed: 15170859] [Cross Ref]
  25. Karim MA, Nagle DL, Kandil HH, Burger J, Moore KJ, Spritz RA. Mutations in the Chediak-Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino acid CHS protein. Hum Mol Genet 6: 1087–1089, 1997. [PubMed: 9215679] [Cross Ref]
  26. Rendu F, Breton-Gorius J, Lebret M, Klebanoff C, Buriot D, Griscelli C, Levy-Toledano S, Caen JP. Evidence that abnormal platelet functions in human Chediak-Higashi syndrome are the result of a lack of dense bodies. Am J Pathol 111: 307–314, 1983. [PMC free article: PMC1916273] [PubMed: 6222656]
  27. Ciferri S, Emiliani C, Guglielmini G, Orlacchio A, Nenci GG, Gresele P. Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost 83: 157–164, 2000. [PubMed: 10669170]
  28. Bentfeld-Barker ME and Bainton DF. Identification of primary lysosomes in human megakaryocytes and platelets. Blood 59: 472–481, 1982. [PubMed: 6277410]
  29. Ren Q, Barber HK, Crawford GL, Karim ZA, Zhao C, Choi W, Wang CC, Hong W, Whiteheart SW. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 18: 24–33, 2007. [PMC free article: PMC1751319] [PubMed: 17065550] [Cross Ref]
  30. Chen D, Lemons PP, Schraw T, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood 96: 1782–1788, 2000. [PubMed: 10961877]
  31. Silverstein RL and Febbraio M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 80: 1470–1475, 1992. [PubMed: 1520873]
  32. Israels SJ, Gerrard JM, Jacques YV, McNicol A, Cham B, Nishibori M, Bainton DF. Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140). Blood 80: 143–152, 1992. [PubMed: 1377048]
  33. Whiss PA, Andersson RG, Srinivas U. Modulation of P-selectin expression on isolated human platelets by an NO donor assessed by a novel ELISA application. J Immunol Methods 200: 135–143, 1997. [PubMed: 9005952] [Cross Ref]
  34. Merten M and Thiagarajan P. P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation 102: 1931–1936, 2000. [PubMed: 11034941]
  35. Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B. Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J Clin Invest 117: 953–960, 2007. [PMC free article: PMC1821068] [PubMed: 17380206] [Cross Ref]
  36. Padilla A, Moake JL, Bernardo A, Ball C, Wang Y, Arya M, Nolasco L, Turner N, Berndt MC, Anvari B, Lopez JA, Dong JF. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood 103: 2150–2156, 2004. [PubMed: 14630802] [Cross Ref]
  37. Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, Lopez JA. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190: 803–814, 1999. [PMC free article: PMC2195629] [PubMed: 10499919] [Cross Ref]
  38. Merten M, Beythien C, Gutensohn K, Kuhnl P, Meinertz T, Thiagarajan P. Sulfatides activate platelets through P-selectin and enhance platelet and platelet-leukocyte aggregation. Arterioscler Thromb Vasc Biol 25: 258–263, 2005. [PubMed: 15528476] [Cross Ref]
  39. Tailor A, Cooper D, Granger DN. Platelet-vessel wall interactions in the microcirculation. Microcirculation 12: 275–285, 2005. [PubMed: 15814436] [Cross Ref]
  40. Andre P, Hartwell D, Hrachovinova I, Saffaripour S, Wagner DD. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci USA 97: 13835–13840, 2000. [PMC free article: PMC17662] [PubMed: 11095738] [Cross Ref]
  41. Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 35: 1170–1174, 2003. [PubMed: 12757754]
  42. Jurk K, Clemetson KJ, de Groot PG, Brodde MF, Steiner M, Savion N, Varon D, Sixma JJ, Van Aken H, Kehrel BE. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 17: 1490–1492, 2003. [PubMed: 12824298] [Cross Ref]
  43. Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, Lopez JA. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192: 193–204, 2000. [PMC free article: PMC2193258] [PubMed: 10899906] [Cross Ref]
  44. Harmon JT and Jamieson GA. The glycocalicin portion of platelet glycoprotein Ib expresses both high and moderate affinity receptor sites for thrombin. A soluble radioreceptor assay for the interaction of thrombin with platelets. J Biol Chem 261: 13224–13229, 1986. [PubMed: 3759960]
  45. Weeterings C, de Groot PG, Adelmeijer J, Lisman T. The glycoprotein Ib-IX-V complex contributes to tissue factor-independent thrombin generation by recombinant factor VIIa on the activated platelet surface. Blood 112: 3227–3233, 2008. [PubMed: 18612104] [Cross Ref]
  46. Bradford HN, Pixley RA, Colman RW. Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 275: 22756–22763, 2000. [PubMed: 10801853] [Cross Ref]
  47. Baglia FA, Shrimpton CN, Emsley J, Kitagawa K, Ruggeri ZM, Lopez JA, Walsh PN. Factor XI interacts with the leucine-rich repeats of glycoprotein Ibalpha on the activated platelet. J Biol Chem 279: 49323–49329, 2004. [PubMed: 15375170] [Cross Ref]
  48. Chavakis T, Santoso S, Clemetson KJ, Sachs UJ, Isordia-Salas I, Pixley RA, Nawroth PP, Colman RW, Preissner KT. High molecular weight kininogen regulates platelet-leukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem 278: 45375–45381, 2003. [PubMed: 12952972] [Cross Ref]
  49. Pham A and Wang J. Bernard-Soulier syndrome: an inherited platelet disorder. Arch Pathol Lab Med 131: 1834–1836, 2007. [PubMed: 18081445]
  50. Kunishima S, Kamiya T, Saito H. Genetic abnormalities of Bernard-Soulier syndrome. Int J Hematol 76: 319–327, 2002. [PubMed: 12463594] [Cross Ref]
  51. Coller BS, Peerschke EI, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood 61: 99–110, 1983. [PubMed: 6336654]
  52. Niiya K, Hodson E, Bader R, Byers-Ward V, Koziol JA, Plow EF, Ruggeri ZM. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 70: 475–483, 1987. [PubMed: 3607284]
  53. Ma YQ, Qin J, Plow EF. Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5: 1345–1352, 2007. [PubMed: 17635696] [Cross Ref]
  54. Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost 7 Suppl 1: 200–205, 2009. [PubMed: 19630800] [Cross Ref]
  55. Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115: 3363–3369, 2005. [PMC free article: PMC1297263] [PubMed: 16322781] [Cross Ref]
  56. Thomas D and Giugliano RP. Antiplatelet therapy in early management of non-ST-segment elevation acute coronary syndrome: the 2002 and 2007 guidelines from North America and Europe. J Cardiovasc Pharmacol 51: 425–433, 2008. [PubMed: 18418272] [Cross Ref]
  57. Farndale RW, Lisman T, Bihan D, Hamaia S, Smerling CS, Pugh N, Konitsiotis A, Leitinger B, de Groot PG, Jarvis GE, Raynal N. Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions. Biochem Soc Trans 36: 241–250, 2008. [PubMed: 18363567] [Cross Ref]
  58. Smethurst PA, Onley DJ, Jarvis GE, O’Connor MN, Knight CG, Herr AB, Ouwehand WH, Farndale RW. Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J Biol Chem 282: 1296–1304, 2007. [PubMed: 17085439] [Cross Ref]
  59. Knight CG, Morton LF, Onley DJ, Peachey AR, Messent AJ, Smethurst PA, Tuckwell DS, Farndale RW, Barnes MJ. Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem 273: 33287–33294, 1998. [PubMed: 9837901] [Cross Ref]
  60. Guidetti GF, Bernardi B, Consonni A, Rizzo P, Gruppi C, Balduini C, Torti M. Integrin alpha2beta1 induces phosphorylation-dependent and phosphorylation-independent activation of phospholipase Cgamma2 in platelets: role of Src kinase and Rac GTPase. J Thromb Haemost 7: 1200–1206, 2009. [PubMed: 19422462] [Cross Ref]
  61. Suzuki H, Murasaki K, Kodama K, Takayama H. Intracellular localization of glycoprotein VI in human platelets and its surface expression upon activation. Br J Haematol 121: 904–912, 2003. [PubMed: 12786802] [Cross Ref]
  62. Moroi M and Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res 114: 221–233, 2004. [PubMed: 15381385] [Cross Ref]
  63. Kim S, Mangin P, Dangelmaier C, Lillian R, Jackson SP, Daniel JL, Kunapuli SP. The role of PI 3-K{beta} in glycoprotein VI-mediated akt activation in platelets. J Biol Chem, 2009. [PMC free article: PMC2797145] [PubMed: 19700402] [Cross Ref]
  64. Gibbins J, Asselin J, Farndale R, Barnes M, Law CL, Watson SP. Tyrosine phosphorylation of the Fc receptor gamma-chain in collagen-stimulated platelets. J Biol Chem 271: 18095–18099, 1996. [PubMed: 8663460]
  65. Arthur JF, Dunkley S, Andrews RK. Platelet glycoprotein VI-related clinical defects. Br J Haematol 139: 363–372, 2007. [PubMed: 17910626] [Cross Ref]
  66. Coughlin SR. Protease-activated receptors in vascular biology. Thromb Haemost 86: 298–307, 2001. [PubMed: 11487018]
  67. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103: 879–887, 1999. [PMC free article: PMC408153] [PubMed: 10079109] [Cross Ref]
  68. Ishihara H, Zeng D, Connolly AJ, Tam C, Coughlin SR. Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91: 4152–4157, 1998. [PubMed: 9596661]
  69. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–506, 1997. [PubMed: 9087410] [Cross Ref]
  70. Woulfe DS. Platelet G protein-coupled receptors in hemostasis and thrombosis. J Thromb Haemost 3: 2193–2200, 2005. [PubMed: 16194198] [Cross Ref]
  71. TRA-CER_Executive_and_Steering_Committees. The Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRA*CER) trial: study design and rationale. Am Heart J 158: 327–334 e324, 2009. [PubMed: 19699853]
  72. Price MJ. Bedside evaluation of thienopyridine antiplatelet therapy. Circulation 119: 2625–2632, 2009. [PubMed: 19451364] [Cross Ref]
  73. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409: 202–207, 2001. [PubMed: 11196645] [Cross Ref]
  74. Murugappan S, Shankar H, Kunapuli SP. Platelet receptors for adenine nucleotides and thromboxane A2. Semin Thromb Hemost 30: 411–418, 2004. [PubMed: 15354262] [Cross Ref]
  75. Habib A, FitzGerald GA, Maclouf J. Phosphorylation of the thromboxane receptor alpha, the predominant isoform expressed in human platelets. J Biol Chem 274: 2645–2651, 1999. [PubMed: 9915793] [Cross Ref]
  76. Nakahata N. Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118: 18–35, 2008. [PubMed: 18374420] [Cross Ref]
  77. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, Vyas SN, FitzGerald GA. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med 345: 1809–1817, 2001. [PubMed: 11752357] [Cross Ref]
  78. Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69: 1366–1372, 1982. [PMC free article: PMC370209] [PubMed: 7045161] [Cross Ref]
  79. Bousser MG, Amarenco P, Chamorro A, Fisher M, Ford I, Fox K, Hennerici MG, Mattle HP, Rothwell PM. Rationale and design of a randomized, double-blind, parallel-group study of terutroban 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with terutroban in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study. Cerebrovasc Dis 27: 509–518, 2009. [PubMed: 19372653] [Cross Ref]
  80. Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS. Distribution of blood platelets flowing in arterioles. Am J Physiol 248: H318–323, 1985. [PubMed: 3976902]
  81. Woldhuis B, Tangelder GJ, Slaaf DW, Reneman RS. Concentration profile of blood platelets differs in arterioles and venules. Am J Physiol 262: H1217–1223, 1992. [PubMed: 1566903]
  82. Fujimura Y, Titani K, Holland LZ, Russell SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 261: 381–385, 1986. [PubMed: 2934387]
  83. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28: 403–412, 2008. [PubMed: 18174460] [Cross Ref]
  84. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res 120 Suppl 1: S5–9, 2007. [PMC free article: PMC2702526] [PubMed: 17493665] [Cross Ref]
  85. Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84: 289–297, 1996. [PubMed: 8565074] [Cross Ref]
  86. Rumbaut RE, Randhawa JK, Smith CW, Burns AR. Mouse cremaster venules are predisposed to light/dye-induced thrombosis independent of wall shear rate, CD18, ICAM-1, or P-selectin. Microcirculation 11: 239–247, 2004. [PubMed: 15280078] [Cross Ref]
  87. Konstantinides S, Ware J, Marchese P, Almus-Jacobs F, Loskutoff DJ, Ruggeri ZM. Distinct antithrombotic consequences of platelet glycoprotein Ibalpha and VI deficiency in a mouse model of arterial thrombosis. J Thromb Haemost 4: 2014–2021, 2006. [PubMed: 16961609] [Cross Ref]
  88. Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108: 1903–1910, 2006. [PMC free article: PMC1895550] [PubMed: 16772609] [Cross Ref]
  89. Mailhac A, Badimon JJ, Fallon JT, Fernandez-Ortiz A, Meyer B, Chesebro JH, Fuster V, Badimon L. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets. Circulation 90: 988–996, 1994. [PubMed: 8044972]
  90. Laffan M, Brown SA, Collins PW, Cumming AM, Hill FG, Keeling D, Peake IR, Pasi KJ. The diagnosis of von Willebrand disease: a guideline from the UK Haemophilia Centre Doctors’ Organization. Haemophilia 10: 199–217, 2004. [PubMed: 15086318] [Cross Ref]
  91. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 95: 9524–9529, 1998. [PMC free article: PMC21371] [PubMed: 9689113] [Cross Ref]
  92. Patel KN, Soubra SH, Bellera RV, Dong JF, McMullen CA, Burns AR, Rumbaut RE. Differential role of von Willebrand factor and P-selectin on microvascular thrombosis in endotoxemia. Arterioscler Thromb Vasc Biol 28: 2225–2230, 2008. [PMC free article: PMC2585611] [PubMed: 18802014] [Cross Ref]
  93. Farndale RW. Collagen-induced platelet activation. Blood Cells Mol Dis 36: 162–165, 2006. [PubMed: 16464621] [Cross Ref]
  94. Cruz MA, Chen J, Whitelock JL, Morales LD, Lopez JA. The platelet glycoprotein Ib-von Willebrand factor interaction activates the collagen receptor alpha2beta1 to bind collagen: activation-dependent conformational change of the alpha2-I domain. Blood 105: 1986–1991, 2005. [PubMed: 15514009]
  95. Sarratt KL, Chen H, Zutter MM, Santoro SA, Hammer DA, Kahn ML. GPVI and alpha2beta1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow. Blood 106: 1268–1277, 2005. [PMC free article: PMC1895202] [PubMed: 15886326] [Cross Ref]
  96. Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fassler R. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. Embo J 20: 2120–2130, 2001. [PMC free article: PMC125246] [PubMed: 11331578] [Cross Ref]
  97. Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 103: 4A-10A, 2009. [PubMed: 19166707] [Cross Ref]
  98. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987. [PubMed: 3495737] [Cross Ref]
  99. Furchgott RF and Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980. [PubMed: 6253831] [Cross Ref]
  100. Moncada S and Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147 Suppl 1: S193–201, 2006. [PMC free article: PMC1760731] [PubMed: 16402104] [Cross Ref]
  101. Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46: 235–276, 2006. [PubMed: 16402905] [Cross Ref]
  102. Murad F. Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355: 2003–2011, 2006. [PubMed: 17093251] [Cross Ref]
  103. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150–166, 2005. [PubMed: 15688001] [Cross Ref]
  104. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2: 1057–1058, 1987. [PubMed: 2889967] [Cross Ref]
  105. Marcondes S, Cardoso MH, Morganti RP, Thomazzi SM, Lilla S, Murad F, De Nucci G, Antunes E. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for alpha-actinin nitration. Proc Natl Acad Sci USA 103: 3434–3439, 2006. [PMC free article: PMC1413892] [PubMed: 16492779] [Cross Ref]
  106. Schafer A, Wiesmann F, Neubauer S, Eigenthaler M, Bauersachs J, Channon KM. Rapid regulation of platelet activation in vivo by nitric oxide. Circulation 109: 1819–1822, 2004. [PubMed: 15066953] [Cross Ref]
  107. Cerwinka WH, Cooper D, Krieglstein CF, Feelisch M, Granger DN. Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 282: H1111–H1117, 2002. [PubMed: 11834510]
  108. Morrell CN, Matsushita K, Chiles K, Scharpf RB, Yamakuchi M, Mason RJ, Bergmeier W, Mankowski JL, Baldwin WM, 3rd, Faraday N, Lowenstein CJ. Regulation of platelet granule exocytosis by S-nitrosylation. Proc Natl Acad Sci USA 102: 3782–3787, 2005. [PMC free article: PMC553307] [PubMed: 15738422] [Cross Ref]
  109. Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, oude Egbrink MG. Endogenous nitric oxide and prostaglandins synergistically counteract thromboembolism in arterioles but not in venules. Arterioscler Thromb Vasc Biol 21: 163–169, 2001. [PubMed: 11145949]
  110. Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, oude Egbrink MG. Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterioscler Thromb Vasc Biol 18: 139–145, 1998. [PubMed: 9445268]
  111. Ozuyaman B, Godecke A, Kusters S, Kirchhoff E, Scharf RE, Schrader J. Endothelial nitric oxide synthase plays a minor role in inhibition of arterial thrombus formation. Thromb Haemost 93: 1161–1167, 2005. [PubMed: 15968403]
  112. Wood KC, Hebbel RP, Lefer DJ, Granger DN. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic Biol Med 40: 1443–1453, 2006. [PubMed: 16631534] [Cross Ref]
  113. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655, 1991. [PMC free article: PMC51723] [PubMed: 1675786] [Cross Ref]
  114. Sase K and Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 57: 2049–2055, 1995. [PubMed: 7475956] [Cross Ref]
  115. Naseem KM and Riba R. Unresolved roles of platelet nitric oxide synthase. J Thromb Haemost 6: 10–19, 2008. [PubMed: 17944990] [Cross Ref]
  116. Gambaryan S, Kobsar A, Hartmann S, Birschmann I, Kuhlencordt PJ, Muller-Esterl W, Lohmann SM, Walter U. NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost 6: 1376–1384, 2008. [PubMed: 18485089] [Cross Ref]
  117. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep 60: 3–11, 2008. [PubMed: 18276980]
  118. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol 93: 141–147, 2008. [PubMed: 17965142] [Cross Ref]
  119. Higgs EA, Higgs GA, Moncada S, Vane JR. Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch. Br J Pharmacol 63: 535–539, 1978. [PMC free article: PMC1668093] [PubMed: 352466]
  120. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665, 1976. [PubMed: 802670] [Cross Ref]
  121. Eriksson AC and Whiss PA. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates. J Pharmacol Toxicol Methods 52: 356–365, 2005. [PubMed: 16005248] [Cross Ref]
  122. Shanberge JN, Kajiwara Y, Quattrociocchi-Longe T. Effect of aspirin and iloprost on adhesion of platelets to intact endothelium in vivo. J Lab Clin Med 125: 96–101, 1995. [PubMed: 7529817]
  123. Hantgan RR, Hindriks G, Taylor RG, Sixma JJ, de Groot PG. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 76: 345–353, 1990. [PubMed: 2369638]
  124. Marcus AJ, Broekman MJ, Drosopoulos JH, Olson KE, Islam N, Pinsky DJ, Levi R. Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Semin Thromb Hemost 31: 234–246, 2005. [PubMed: 15852226] [Cross Ref]
  125. Fung CY, Marcus AJ, Broekman MJ, Mahaut-Smith MP. P2X(1) receptor inhibition and soluble CD39 administration as novel approaches to widen the cardiovascular therapeutic window. Trends Cardiovasc Med 19: 1–5, 2009. [PMC free article: PMC2866184] [PubMed: 19467446] [Cross Ref]
  126. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454: 345–359, 2007. [PMC free article: PMC1915585] [PubMed: 17256154] [Cross Ref]
  127. Noble MI, Drake-Holland AJ, Vink H. Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. Qjm 101: 513–518, 2008. [PubMed: 18319293] [Cross Ref]
  128. Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101: 1500–1502, 2000. [PubMed: 10747340]
  129. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res 92: 592–594, 2003. [PubMed: 12637366] [Cross Ref]
  130. Vink H and Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79: 581–589, 1996. [PubMed: 8781491]
  131. Smith ML, Long DS, Damiano ER, Ley K. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85: 637–645, 2003. [PMC free article: PMC1303118] [PubMed: 12829517] [Cross Ref]
  132. Baldwin AL and Winlove CP. Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium. J Histochem Cytochem 32: 259–266, 1984. [PubMed: 6198357]
  133. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167, 2007. [PubMed: 17373886] [Cross Ref]
  134. Rumbaut RE, Slaaf DW, Burns AR. Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation 12: 259–274, 2005. [PubMed: 15814435] [Cross Ref]
  135. Wood KC, Hebbel RP, Granger DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol 286: H1608–1614, 2004. [PubMed: 14704223] [Cross Ref]
  136. Katayama T, Ikeda Y, Handa M, Tamatani T, Sakamoto S, Ito M, Ishimura Y, Suematsu M. Immunoneutralization of glycoprotein Ibalpha attenuates endotoxin-induced interactions of platelets and leukocytes with rat venular endothelium in vivo. Circ Res 86: 1031–1037, 2000. [PubMed: 10827132]
  137. Cooper D, Russell J, Chitman KD, Williams MC, Wolf RE, Granger DN. Leukocyte dependence of platelet adhesion in postcapillary venules. Am J Physiol Heart Circ Physiol 286: H1895–1900, 2004. [PubMed: 14715510] [Cross Ref]
  138. Rumbaut RE, Bellera RV, Randhawa JK, Shrimpton CN, Dasgupta SK, Dong JF, Burns AR. Endotoxin enhances microvascular thrombosis in mouse cremaster venules via a TLR4-dependent, neutrophil-independent mechanism. Am J Physiol Heart Circ Physiol 290: H1671–1679, 2006. [PubMed: 16284241]
  139. Li Z, Rumbaut RE, Burns AR, Smith CW. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization. Invest Ophthalmol Vis Sci 47: 4794–4802, 2006. [PubMed: 17065490] [Cross Ref]
  140. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 21: 99–111, 2007. [PubMed: 16987572]
  141. Kuijper PH, Gallardo Tores HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb Haemost 80: 443–448, 1998. [PubMed: 9759625]
  142. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 116: 3211–3219, 2006. [PMC free article: PMC1679711] [PubMed: 17143330] [Cross Ref]
  143. Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 3: 1710–1716, 2005. [PubMed: 16102037] [Cross Ref]
  144. Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 104: 100–106, 2004. [PubMed: 15026315]
  145. Dong JF, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, Schade AJ, McIntire LV, Fujikawa K, Lopez JA. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100: 4033–4039, 2002. [PubMed: 12393397]
  146. Chauhan AK, Goerge T, Schneider SW, Wagner DD. Formation of platelet strings and microthrombi in the presence of ADAMTS-13 inhibitor does not require P-selectin or beta3 integrin. J Thromb Haemost 5: 583–589, 2007. [PubMed: 17166247] [Cross Ref]
  147. Moake JL. Thrombotic microangiopathies. N Engl J Med 347: 589–600, 2002. [PubMed: 12192020] [Cross Ref]
  148. Nguyen TC, Liu A, Liu L, Ball C, Choi H, May WS, Aboulfatova K, Bergeron AL, Dong JF. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica 92: 121–124, 2007. [PubMed: 17229645] [Cross Ref]
  149. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, Takano K, Ohmori T, Sakata Y. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood 107: 528–534, 2006. [PubMed: 16189276] [Cross Ref]
  150. Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 205: 2065–2074, 2008. [PMC free article: PMC2526201] [PubMed: 18695007] [Cross Ref]
  151. da Costa Martins P, Garcia-Vallejo JJ, van Thienen JV, Fernandez-Borja M, van Gils JM, Beckers C, Horrevoets AJ, Hordijk PL, Zwaginga JJ. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol 27: 1023–1029, 2007. [PubMed: 17322099] [Cross Ref]
  152. Rivera-Nieves J, Burcin TL, Olson TS, Morris MA, McDuffie M, Cominelli F, Ley K. Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J Exp Med 203: 907–917, 2006. [PMC free article: PMC2118267] [PubMed: 16567389] [Cross Ref]
  153. Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D, Wagner DD. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 191: 1413–1422, 2000. [PMC free article: PMC2193129] [PubMed: 10770806] [Cross Ref]
  154. Massberg S, Enders G, Matos FC, Tomic LI, Leiderer R, Eisenmenger S, Messmer K, Krombach F. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94: 3829–3838, 1999. [PubMed: 10572098]
  155. Khandoga A, Biberthaler P, Enders G, Axmann S, Hutter J, Messmer K, Krombach F. Platelet adhesion mediated by fibrinogen-intercellular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo. Transplantation 74: 681–688, 2002. [PubMed: 12352886]
  156. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost 7: 1057–1066, 2009. [PubMed: 19422456] [Cross Ref]
  157. Fox JE. Cytoskeletal proteins and platelet signaling. Thromb Haemost 86: 198–213, 2001. [PubMed: 11487008]
  158. Escolar G, Krumwiede M, White JG. Organization of the actin cytoskeleton of resting and activated platelets in suspension. Am J Pathol 123: 86–94, 1986. [PMC free article: PMC1888154] [PubMed: 2870643]
  159. Daniel JL, Molish IR, Rigmaiden M, Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 259: 9826–9831, 1984. [PubMed: 6746669]
  160. Jennings LK, Fox JE, Edwards HH, Phillips DR. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem 256: 6927–6932, 1981. [PubMed: 6894599]
  161. Shattil SJ and Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 104: 1606–1615, 2004. [PubMed: 15205259] [Cross Ref]
  162. Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 101: 479–486, 1998. [PMC free article: PMC508588] [PubMed: 9435321] [Cross Ref]
  163. Sobocka MB, Sobocki T, Babinska A, Hartwig JH, Li M, Ehrlich YH, Kornecki E. Signaling pathways of the F11 receptor (F11R; a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res 24: 85–105, 2004. [PubMed: 15344881] [Cross Ref]
  164. Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D, Conley PB, Terhorst C, Phillips DR. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood 106: 3028–3034, 2005. [PubMed: 16037392] [Cross Ref]
  165. Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD. CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med 8: 247–252, 2002. [PubMed: 11875495] [Cross Ref]
  166. Rand ML, Leung R, Packham MA. Platelet function assays. Transfus Apher Sci 28: 307–317, 2003. [PubMed: 12725958] [Cross Ref]
  167. oude Egbrink MG, Tangelder GJ, Slaaf DW, Reneman RS. Thromboembolic reaction following wall puncture in arterioles and venules of the rabbit mesentery. Thromb Haemost 59: 23–28, 1988. [PubMed: 3363530]
  168. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature Med 8: 1175–1181, 2002. [PubMed: 12244306] [Cross Ref]
  169. Kuijpers MJ, Munnix IC, Cosemans JM, Vlijmen BV, Reutelingsperger CP, Egbrink MO, Heemskerk JW. Key role of platelet procoagulant activity in tissue factor-and collagen-dependent thrombus formation in arterioles and venules in vivo differential sensitivity to thrombin inhibition. Microcirculation 15: 269–282, 2008. [PubMed: 18464157] [Cross Ref]
  170. Povlishock JT, Rosenblum WI, Sholley MM, Wei EP. An ultrastructural analysis of endothelial change paralleling platelet aggregation in a light/dye model of microvascular insult. Am J Pathol 110: 148–160, 1983. [PMC free article: PMC1916154] [PubMed: 6824062]
  171. Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106: 385–392, 2000. [PMC free article: PMC314330] [PubMed: 10930441] [Cross Ref]
  172. Vine AK. Recent advances in haemostasis and thrombosis. Retina 29: 1–7, 2009. [PubMed: 19050668]
  173. Schenone M, Furie BC, Furie B. The blood coagulation cascade. Curr Opin Hematol 11: 272–277, 2004. [PubMed: 15314527] [Cross Ref]
  174. Ajjan R and Grant PJ. Coagulation and atherothrombotic disease. Atherosclerosis 186: 240–259, 2006. [PubMed: 16343508] [Cross Ref]
  175. Kalafatis M, Swords NA, Rand MD, Mann KG. Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes. Biochim Biophys Acta 1227: 113–129, 1994. [PubMed: 7986819]
  176. Schroit AJ and Zwaal RF. Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta 1071: 313–329, 1991. [PubMed: 1958692]
  177. Ahmad SS, Rawala-Sheikh R, Walsh PN. Components and assembly of the factor X activating complex. Semin Thromb Hemost 18: 311–323, 1992. [PubMed: 1455249] [Cross Ref]
  178. Weiss HJ, Vicic WJ, Lages BA, Rogers J. Isolated deficiency of platelet procoagulant activity. Am J Med 67: 206–213, 1979. [PubMed: 572637] [Cross Ref]
  179. Rosing J, Bevers EM, Comfurius P, Hemker HC, van Dieijen G, Weiss HJ, Zwaal RF. Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder. Blood 65: 1557–1561, 1985. [PubMed: 3995186]
  180. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 13: 269–288, 1967. [PubMed: 6025241] [Cross Ref]
  181. Crawford N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol 21: 53–69, 1971. [PubMed: 4254312] [Cross Ref]
  182. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264: 17049–17057, 1989. [PubMed: 2793843]
  183. George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, Newman PJ. Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest 78: 340–348, 1986. [PMC free article: PMC423547] [PubMed: 2942561] [Cross Ref]
  184. Warkentin TE and Sheppard JI. Generation of platelet-derived microparticles and procoagulant activity by heparin-induced thrombocytopenia IgG/serum and other IgG platelet agonists: a comparison with standard platelet agonists. Platelets 10: 319–326, 1999. [PubMed: 16801109]
  185. Galli M, Bevers EM, Comfurius P, Barbui T, Zwaal RF. Effect of antiphospholipid antibodies on procoagulant activity of activated platelets and platelet-derived microvesicles. Br J Haematol 83: 466–472, 1993. [PubMed: 8485053] [Cross Ref]
  186. Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72: 295–304, 1993. [PubMed: 8303669] [Cross Ref]
  187. Kelton JG, Warkentin TE, Hayward CP, Murphy WG, Moore JC. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood 80: 2246–2251, 1992. [PubMed: 1421394]
  188. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30: 450–459, 2002. [PubMed: 12031651] [Cross Ref]
  189. Rozmyslowicz T, Majka M, Kijowski J, Murphy SL, Conover DO, Poncz M, Ratajczak J, Gaulton GN, Ratajczak MZ. Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. Aids 17: 33–42, 2003. [PubMed: 12478067]
  190. Merten M, Pakala R, Thiagarajan P, Benedict CR. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 99: 2577–2582, 1999. [PubMed: 10330391]
  191. Hrachovinova I, Cambien B, Hafezi-Moghadam A, Kappelmayer J, Camphausen RT, Widom A, Xia L, Kazazian HH, Jr., Schaub RG, McEver RP, Wagner DD. Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9: 1020–1025, 2003. [PubMed: 12858167] [Cross Ref]
  192. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24: 1015–1022, 2004. [PubMed: 15117736] [Cross Ref]
  193. Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A 96: 2311–2315, 1999. [PMC free article: PMC26780] [PubMed: 10051638] [Cross Ref]
  194. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197: 1585–1598, 2003. [PMC free article: PMC2193915] [PubMed: 12782720] [Cross Ref]
  195. Kumar A, Villani MP, Patel UK, Keith JC, Jr., Schaub RG. Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation 99: 1363–1369, 1999. [PubMed: 10077522]
  196. Afshar-Kharghan V and Thiagarajan P. Leukocyte adhesion and thrombosis. Curr Opin Hematol 13: 34–39, 2006. [PubMed: 16319685] [Cross Ref]
  197. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106: 1604–1611, 2005. [PubMed: 15741221]
  198. Eilertsen KE and Osterud B. Tissue factor: (patho)physiology and cellular biology. Blood Coagul Fibrinolysis 15: 521–538, 2004. [PubMed: 15389118]
  199. Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwege V, Hedman H, Freyssinet JM. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153: 3245–3255, 1994. [PubMed: 7522256]
  200. Plescia J and Altieri DC. Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation. Biochem J 319 (Pt 3): 873–879, 1996. [PMC free article: PMC1217869] [PubMed: 8920993]
  201. Si-Tahar M, Pidard D, Balloy V, Moniatte M, Kieffer N, Van Dorsselaer A, Chignard M. Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J Biol Chem 272: 11636–11647, 1997. [PubMed: 9111081]
  202. May AE, Langer H, Seizer P, Bigalke B, Lindemann S, Gawaz M. Platelet-leukocyte interactions in inflammation and atherothrombosis. Semin Thromb Hemost 33: 123–127, 2007. [PubMed: 17340459] [Cross Ref]
  203. Lowe GD, Machado SG, Krol WF, Barton BA, Forbes CD. White blood cell count and haematocrit as predictors of coronary recurrence after myocardial infarction. Thromb Haemost 54: 700–703, 1985. [PubMed: 4089799]
  204. Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol 25: 658–670, 2005. [PubMed: 15662026] [Cross Ref]
  205. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep 57: 1–134, 2009. [PubMed: 19788058]
  206. Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 23: 225–229, 2009. [PMC free article: PMC2762278] [PubMed: 19683659] [Cross Ref]
  207. Franchini M and Mannucci PM. Venous and arterial thrombosis: different sides of the same coin? Eur J Intern Med 19: 476–481, 2008. [PubMed: 19013373] [Cross Ref]
  208. Lopez JA and Chen J. Pathophysiology of venous thrombosis. Thromb Res 123 Suppl 4: S30–34, 2009. [PubMed: 19303501] [Cross Ref]
  209. Aird WC. Vascular bed-specific thrombosis. J Thromb Haemost 5, Suppl 1: 283–291, 2007. [PubMed: 17635738] [Cross Ref]
  210. Chan MY, Andreotti F, Becker RC. Hypercoagulable states in cardiovascular disease. Circulation 118: 2286–2297, 2008. [PubMed: 19029477] [Cross Ref]
  211. Heit JA. Venous thromboembolism: disease burden, outcomes and risk factors. J Thromb Haemost 3: 1611–1617, 2005. [PubMed: 16102026] [Cross Ref]
  212. Bagot CN and Arya R. Virchow and his triad: a question of attribution. Br J Haematol 143: 180–190, 2008. [PubMed: 18783400] [Cross Ref]
  213. Sevitt S. The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 27: 517–528, 1974. [PMC free article: PMC475389] [PubMed: 4138834] [Cross Ref]
  214. Lopez JA, Kearon C, Lee AY. Deep venous thrombosis. Hematology Am Soc Hematol Educ Program: 439–456, 2004. [PubMed: 15561697]
  215. Hamer JD, Malone PC, Silver IA. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Br J Surg 68: 166–170, 1981. [PubMed: 7470818] [Cross Ref]
  216. Closse C, Seigneur M, Renard M, Pruvost A, Dumain P, Belloc F, Boisseau MR. Influence of hypoxia and hypoxia-reoxygenation on endothelial P-selectin expression. Thromb Res 85: 159–164, 1997. [PubMed: 9058490] [Cross Ref]
  217. Poredos P and Jezovnik MK. The role of inflammation in venous thromboembolism and the link between arterial and venous thrombosis. Int Angiol 26: 306–311, 2007. [PubMed: 18091697]
  218. Di Nisio M, Wichers IM, Middeldorp S. Treatment for superficial thrombophlebitis of the leg. Cochrane Database Syst Rev: CD004982, 2007. [PubMed: 17253533]
  219. Jacobs BR. Central venous catheter occlusion and thrombosis. Crit Care Clin 19: 489–514, ix, 2003. [PubMed: 12848317] [Cross Ref]
  220. Xiang DZ, Verbeken EK, Van Lommel AT, Stas M, De Wever I. Composition and formation of the sleeve enveloping a central venous catheter. J Vasc Surg 28: 260–271, 1998. [PubMed: 9719321] [Cross Ref]
  221. Raad, II, Luna M, Khalil SA, Costerton JW, Lam C, Bodey GP. The relationship between the thrombotic and infectious complications of central venous catheters. Jama 271: 1014–1016, 1994. [PubMed: 8139059] [Cross Ref]
  222. Lowe GDO, Greer IA, Cooke TG, Dewar EP, Evans MJ, Forbes CD, Mollan RAB, Scurr JH, de Swiet M. Risk of and prophylaxis for venous thromboembolism in hospital patients. Thromboembolic Risk Factors (THRIFT) Consensus Group. Bmj 305: 567–574, 1992.
  223. Culver D, Crawford JS, Gardiner JH, Wiley AM. Venous thrombosis after fractures of the upper end of the femur. A study of incidence and site. J Bone Joint Surg Br 52: 61–69, 1970. [PubMed: 5436205]
  224. Scurr JH, Machin SJ, Bailey-King S, Mackie IJ, McDonald S, Smith PD. Frequency and prevention of symptomless deep-vein thrombosis in long-haul flights: a randomised trial. Lancet 357: 1485–1489, 2001. [PubMed: 11377600] [Cross Ref]
  225. Cooley BC, Szema L, Chen CY, Schwab JP, Schmeling G. A murine model of deep vein thrombosis: characterization and validation in transgenic mice. Thromb Haemost 94: 498–503, 2005. [PubMed: 16268462] [Cross Ref]
  226. Myers D, Jr., Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, Knibbs R, Strieter R, Wakefield T. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res 108: 212–221, 2002. [PubMed: 12505044] [Cross Ref]
  227. Hayes MJ, Morris GK, Hampton JR. Lack of effect of bed rest and cigarette smoking on development of deep venous thrombosis after myocardial infarction. Br Heart J 38: 981–983, 1976. [PMC free article: PMC483116] [PubMed: 971383] [Cross Ref]
  228. Pinsky DJ, Naka Y, Liao H, Oz MC, Wagner DD, Mayadas TN, Johnson RC, Hynes RO, Heath M, Lawson CA, Stern DM. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest 97: 493–500, 1996. [PMC free article: PMC507042] [PubMed: 8567972] [Cross Ref]
  229. Yan SF, Pinsky DJ, Stern DM. A pathway leading to hypoxia-induced vascular fibrin deposition. Semin Thromb Hemost 26: 479–483, 2000. [PubMed: 11129403] [Cross Ref]
  230. Kessler CM. The link between cancer and venous thromboembolism: a review. Am J Clin Oncol 32: S3–7, 2009. [PubMed: 19654481] [Cross Ref]
  231. Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, Colwell CW. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133: 381S–453S, 2008. [PubMed: 18574271] [Cross Ref]
  232. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. Jama 293: 715–722, 2005. [PubMed: 15701913] [Cross Ref]
  233. Heit JA, O’Fallon WM, Petterson TM, Lohse CM, Silverstein MD, Mohr DN, Melton LJ, 3rd. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med 162: 1245–1248, 2002. [PubMed: 12038942] [Cross Ref]
  234. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 27: 4834–4838, 2009. [PMC free article: PMC2764391] [PubMed: 19738116] [Cross Ref]
  235. Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, Hostetter G, Harvey J, Taubman MB. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13: 2870–2875, 2007. [PubMed: 17504985] [Cross Ref]
  236. Caine GJ, Stonelake PS, Lip GY, Kehoe ST. The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia 4: 465–473, 2002. [PMC free article: PMC1550339] [PubMed: 12407439] [Cross Ref]
  237. Kirkali Z and Van Poppel H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur Urol 52: 658–662, 2007. [PubMed: 17548146] [Cross Ref]
  238. Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 206: 1913–1927, 2009. [PMC free article: PMC2737159] [PubMed: 19667060] [Cross Ref]
  239. Ottinger H, Belka C, Kozole G, Engelhard M, Meusers P, Paar D, Metz KA, Leder LD, Cyrus C, Gnoth S, et al. Deep venous thrombosis and pulmonary artery embolism in high-grade non Hodgkin’s lymphoma: incidence, causes and prognostic relevance. Eur J Haematol 54: 186–194, 1995. [PubMed: 7720839]
  240. Bosson JL, Pouchain D, Bergmann JF. A prospective observational study of a cohort of outpatients with an acute medical event and reduced mobility: incidence of symptomatic thromboembolism and description of thromboprophylaxis practices. J Intern Med 260: 168–176, 2006. [PubMed: 16882282] [Cross Ref]
  241. Shivakumar SP, Anderson DR, Couban S. Catheter-associated thrombosis in patients with malignancy. J Clin Oncol 27: 4858–4864, 2009. [PubMed: 19738117] [Cross Ref]
  242. Shah PK. Inflammation and plaque vulnerability. Cardiovasc Drugs Ther 23: 31–40, 2009. [PubMed: 18949542] [Cross Ref]
  243. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381, 1993. [PMC free article: PMC1025095] [PubMed: 8518056] [Cross Ref]
  244. Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95: 594–599, 1997. [PubMed: 9024145]
  245. Badimon JJ, Lettino M, Toschi V, Fuster V, Berrozpe M, Chesebro JH, Badimon L. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 99: 1780–1787, 1999. [PubMed: 10199872]
  246. Essler M, Retzer M, Bauer M, Zangl KJ, Tigyi G, Siess W. Stimulation of platelets and endothelial cells by mildly oxidized LDL proceeds through activation of lysophosphatidic acid receptors and the Rho/Rho-kinase pathway. Inhibition by lovastatin. Ann N Y Acad Sci 905: 282–286, 2000. [PubMed: 10818465] [Cross Ref]
  247. Praprotnik S, Ferluga D, Vizjak A, Hvala A, Avcin T, Rozman B. Microthrombotic/microangiopathic manifestations of the antiphospholipid syndrome. Clin Rev Allergy Immunol 36: 109–125, 2009. [PubMed: 19067253] [Cross Ref]
  248. Dalldorf FG and Jennette JC. Fatal Meningococcal septicemia. Arch Pahtol Lab Med 101: 6–9, 1977. [PubMed: 576204]
  249. Hosler GA, Cusumano AM, Hutchins GM. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. Arch Pathol Lab Med 127: 834–839, 2003. [PubMed: 12823037]
  250. Hardaway RM. The significance of coagulative and thrombotic changes after haemorrhage and injury. J Clin Pathol Suppl (R Coll Pathol) 4: 110–120, 1970. [PMC free article: PMC1519983] [PubMed: 5293381] [Cross Ref]
  251. oude Egbrink MG, van Gestel MA, Broeders MA, Tangelder GJ, Heemskerk JW, Reneman RS, Slaaf DW. Regulation of microvascular thromboembolism in vivo. Microcirculation 12, 2005. [PubMed: 15814437] [Cross Ref]
  252. oude Egbrink MG, Tangelder GJ, Slaaf DW, Reneman RS. Different roles of prostaglandins in thromboembolic processes in arterioles and venules in vivo. Thromb Haemost 70: 826–833, 1993. [PubMed: 8128442]
  253. Anthoni C, Russell J, Wood KC, Stokes KY, Vowinkel T, Kirchhofer D, Granger DN. Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med 204: 1595–1601, 2007. [PMC free article: PMC2118639] [PubMed: 17562818] [Cross Ref]
  254. Sato M and Ohshima N. Effect of wall shear rate on thrombogenesis in microvessels of the rat mesentery. Circ Res 66: 941–949, 1990. [PubMed: 2317896]
  255. oude Egbrink MG, Tangelder GJ, Slaaf DW, Reneman RS. Fluid dynamics and the thromboembolic reaction in mesenteric arterioles and venules. Am J Physiol 260: H1826–1833, 1991. [PubMed: 2058719]
  256. Moake JL. von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Semin Hematol 41: 4–14, 2004. [PubMed: 14727254] [Cross Ref]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53454

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...