• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Granger DN, Senchenkova E. Inflammation and the Microcirculation. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of Inflammation and the Microcirculation

Inflammation and the Microcirculation.

Show details

References

1.
Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009; 54: 2129–38. [PMC free article: PMC2834169] [PubMed: 19942084]
2.
Zeyda M, Stulnig TM. Obesity, Inflammation, and insulin resistance—a mini-review. Gerontology. 2009; 55(4): 379–86. [PubMed: 19365105] [Cross Ref]
3.
Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454: 428–435. [PubMed: 18650913] [Cross Ref]
4.
Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000; 190: 255–66. [PubMed: 10685060] [Cross Ref]
5.
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010; 362(4): 329–44. [PubMed: 20107219]
6.
Rocha e Silva M. A brief survey of the history of inflammation. 1978. Agents Actions. 1994; 43: 86–90. [PubMed: 7725981]
7.
Cotran RS. Inflammation: Historical perspectives. In: Inflammation: Basic principles and clinical correlates. 3rd Edition (Gallin JI & Snyderman R, eds.), Chapt. 1, pp. 5–10, Lippincott Williams & Wilkins, Philadelphia, 1999.
8.
Ley K. History of inflammation research. In: Physiology of Inflammation (Ley K, ed.), Chapt. 1, pp. 1–10, Oxford Univ Press, 2001.
9.
Harlan J, Liu DY. In vivo models of leukocyte adherence to endothelium. In: Adhesion: Its role in inflammatory disease. Chapt. 6, pp. 117–76, W.H. Freeman & Co., New York, 1992.
10.
Hurley JV. Inflammation. In: Edema (Staub NC & Taylor AE, eds.), Chapt. 19, pp. 463–88, Raven Press, New York, 1984.
11.
Ley K. The microcirculation in inflammation. In: Handbook of Physiology: Microcirculation (Tuma RF, Duran WN, & Ley K, eds.), Chapt. 9, pp. 387–448, Academic Press, San Diego, 2008.
12.
Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010; 17: 192–205. [PMC free article: PMC3071571] [PubMed: 20374483] [Cross Ref]
13.
Granger DN. Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation. 1999; 6: 167–78. [PubMed: 10501090]
14.
Wiedman MP. Architecture. In: Handbook of Physiology. Section 2: The Cardiovascular System, Vol. IV, Microcirculation, Part 1 ( Renkin EM & Michel CC, eds.), Chapt. 2, 11–40, American Physiological Society, Bethesda, Md., 1984.
15.
Arfors KE, Rutili G, Svenjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand Suppl. 1979; 463: 93–103. [PubMed: 382749]
16.
Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996; 32:687–98. [PubMed: 8915187]
17.
Kubes P, Granger DN. Leukocyte-endothelial cell interactions evoked by mast cells. Cardiovasc Res. 1996; 32: 699–708. [PubMed: 8915188]
18.
Grant L. The sticking and emigration of white blood cells in inflammation. In: The inflammatory process (Zweifach B, Grant L, & McCluskey L, eds.), Vol. 2, p. 205, Academic Press, Orlando, 1972.
19.
Landis EM, Pappenheimer JR. Exchange of substances through capillary walls. In: Handbook of Physiology, Section 2; Circulation (Hamilton WF & Dow P, eds.), Chapt. 29, pp. 961–1034, American Physiological Society, Washington, DC, 1963.
20.
Harlan J. Leukocyte-endothelial interactions. Blood. 1985; 65: 513–25. [PubMed: 3918593]
21.
Majno G. Chronic inflammation. Links with angiogenesis and wound healing. Am J Pathol. 1998; pp. 1035–39. [PMC free article: PMC1853039] [PubMed: 9777935]
22.
Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl. 1979: 463: 11–32. [PubMed: 382743]
23.
Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003; 101(10): 3765–77. [PubMed: 12543869] [Cross Ref]
24.
Kvietys PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol. 1997; 273: G1189–99. [PubMed: 9435543]
25.
Ellis CG, Jagger J, Sharpe M. The microcirculation as a functional system. Crit Care. 2005; 9 Suppl 4: S3–8. [PMC free article: PMC3226163] [PubMed: 16168072]
26.
Johnson PC. Overview of the microcirculation. In: Handbook of Physiology: Microcirculation, (Tuma RF, Duran WN, & Ley K, eds.), pp. xi–xxiv, Academic Press, San Diego, 2008. [Cross Ref]
27.
Kessel RG, Karden RH. Tissues and organs: A text-atlas of scanning electron microscopy. W.H. Freeman & Co, San Francisco, 1979.
28.
Granger DN. Physiology and pathophysiology of the microcirculation. Dialogues Cardiovasc Med. 1988; 3: 123–40.
29.
Kuo L, Davis ML, Chilian WM. Endothelial modulation of arteriolar tone. News Physiol Sci. 1992; 7: 5–9.
30.
Chillan WM. Coronary circulation in health and disease. Summary of an NHLBI Workshop. Circulation. 1997; 95: 522–28. [PMC free article: PMC4037233] [PubMed: 9008472]
31.
Granger HJ, Shepherd AP. Intrinsic microvascular control of tissue oxygen delivery. Microvasc Res. 1973; 5: 49–72. [PubMed: 4684756] [Cross Ref]
32.
Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol. 2006; 176: 1–40. [PubMed: 16999215] [Cross Ref]
33.
Iigo Y, Suematsu M, Higashida T, Oheda J, Matsumoto K, Wakabayashi Y, Ishimura Y, Miyasaka M, Takashi T. Constitutive expression of ICAM-J in rat microvascular systems analyzed by laser confocal microscopy. Am J Physiol. 1997; 273: 138–47. [PubMed: 9249484]
34.
Silverstein, Roy L. (1991). The Vascular Endothelium. In Inflammation: Basic Principles and Clinical Correlates, 3rd edition by John I. Gallin and Ralph Snyderman. Lippincott Williams & Wilkins (pp. 207–25), Philadelphia.
35.
Gerritsen ME. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol. 1987; 36: 2701–11. [PubMed: 2820420] [Cross Ref]
36.
Gerritsen ME, Bloor CM. Endothelial cell gene expression in response to injury. FASEB J. 1993; 7: 523–32. [PubMed: 8472891]
37.
Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med. 2009; 13: 1211–20. [PMC free article: PMC2861890] [PubMed: 19538472] [Cross Ref]
38.
Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007; 454: 345–59. [PMC free article: PMC1915585] [PubMed: 17256154] [Cross Ref]
39.
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000; 440: 653–66. [PubMed: 11007304]
40.
Flessner MF. Endothelial glycocalyx and the peritoneal barrier. Perit Dial Int. 2008; 28:6–12. [PubMed: 18178940]
41.
Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic Biol Med. 1998; 25: 404–33. [PubMed: 9741579] [Cross Ref]
42.
Grisham MB, Jourd’Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol. 1999; 276: G315–21. [PubMed: 9950804]
43.
Stokes KY, Cooper D, Tailor A, Granger DN. Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med. 2002; 33: 1026–36. [PubMed: 12374614]
44.
Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem. 2004; 385: 1–10. [PubMed: 14977040] [Cross Ref]
45.
Shusta EV. Blood-brain barrier. In: Endothelial cells in health and disease (Aird WC, ed.), Taylor and Francis, Boca Raton, Chapt. 2, pp. 33–64, 2005.
46.
Granger DN, Stokes KY. Differential regulation of leukocyte-endothelial cell adhesion. In: Endothelial cells in health and disease (Aird WC, ed.), Taylor and Francis, Boca Raton, Chapt. 13, pp. 229–44, 2005.
47.
Laughlin MH. Endothelium-mediated control of coronary vascular tone after chronic exercise training. Med Sci Sports Exerc. 1995; 27: 1135–44. [PubMed: 7476057] [Cross Ref]
48.
Davis MJ, Hill MA, Kuo L. Local regulation of microvascular perfusion. In: Handbook of Physiology: Microcirculation (Tuma RF, Duran WN, & Ley K, eds.), Chapt. 6 pp. 161–284, Academic Press, San Diego, 2008. [Cross Ref]
49.
Tran CH, Welsh DG. The differential hypothesis: a provocative rationalization of the conducted vasomotor response. Microcirculation. 2010; 17: 226–36. [PubMed: 20374485] [Cross Ref]
50.
Csiszar A, Lehoux S, Ungvari Z. Hemodynamic forces, vascular oxidative stress, and regulation of BMP-2/4 expression. Antioxid Redox Signal. 2009; 11: 1683–97. [PMC free article: PMC2842584] [PubMed: 19320562] [Cross Ref]
51.
Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008; 103(5): 398–406. [PMC free article: PMC2705866] [PubMed: 18600364] [Cross Ref]
52.
Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. 2009; 77: 235–46. [PMC free article: PMC2668721] [PubMed: 19323975] [Cross Ref]
53.
Armulik A, Abramsson A, Betsholtz C. Endothelial /pericyte interactions. Circ Res. 2005; 97: 512–23. [PubMed: 16166562] [Cross Ref]
54.
Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005; 7: 452–64. [PMC free article: PMC1871727] [PubMed: 16212810] [Cross Ref]
55.
Kubes P, Granger DN. Leukocyte-endothelial cell interactions evoked by mast cells. Cardiovasc Res. 1996; 32: 699–708. [PubMed: 8915188]
56.
Crivellato E, Travan L, Ribatti D. Mast cells and basophils: a potential link in promoting angiogenesis during allergic inflammation. Int Arch Allergy Immunol. 2010; 151: 89–97. [PubMed: 19752562] [Cross Ref]
57.
Ryan JJ, Fernando JF. Mast cell modulation of the immune response. Curr Allergy Asthma Rep. 2009; 9: 353–59. [PubMed: 19671378] [Cross Ref]
58.
Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol. 2008; 9:1215–23. [PMC free article: PMC2856637] [PubMed: 18936782] [Cross Ref]
59.
Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007; 19: 289–95. [PubMed: 17414958] [Cross Ref]
60.
Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001; 22: 199–204. [PubMed: 11274925] [Cross Ref]
61.
Sirén V, Salmenperä P, Kankuri E, Bizik J, Sorsa T, Tervahartiala T, Vaheri A. Cell–cell contact activation of fibroblasts increases the expression of matrix metalloproteinases. Ann Med. 2006; 38: 212–20. [PubMed: 16720435] [Cross Ref]
62.
Kvietys PR, Granger DN. Physiology and pathophysiology of the colonic circulation. Clin Gastroenterol. 1986; 15: 967–83. [PubMed: 3536216]
63.
Hultén L, Lindhagen J, Lundgren . Regional intestinal blood flow in ulcerative colitis and Crohn’s disease. Gastroenterology. 1977; 72: 388–96. [PubMed: 832785]
64.
Holzer P. Neurogenic vasodilatation and plasma leakage in the skin. Gen Pharmacol. 1998; 30: 5–11. [PubMed: 9457475] [Cross Ref]
65.
Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol. 2003; 285: H1791–96. [PubMed: 14561675]
66.
Vanhoutte PM. Endothelial control of vasomotor function: From health to coronary disease. Circ J. 2003; 67: 572–75. [PubMed: 12845177]
67.
Feletou M, Tang EH, Vanhoutte PM. Nitric oxide the gatekeeper of endothelial vasomotor control. Front Biosci. 2008; 13: 4198–217. [PubMed: 18508506] [Cross Ref]
68.
Mori M, Stokes KY, Vowinkel T, Watanabe N, Elrod JW, Harris NR, Lefer DJ, Hibi T, Granger DN. Colonic blood flow responses in experimental colitis: time course and underlying mechanisms. Am J Physiol Gastrointest Liver Physiol. 2005; 289: G1024–29. [PubMed: 16081759] [Cross Ref]
69.
Deniz M, Cetinel S, and Kurtel H. Blood flow alterations in TNBS-induced colitis: role of endothelin receptors. Inflamm Res. 2004; 53: 329–36. [PubMed: 15241569] [Cross Ref]
70.
Garrelds IM, Heiligers JP, Van Meeteren ME, Duncker DJ, Saxena PR, Meijssen MA, and Zijlstra FJ. Intestinal blood flow in murine colitis induced with dextran sulfate sodium. Dig Dis Sci. 2002; 47: 2231–36. [PubMed: 12395896]
71.
Satoyoshi K, Akita Y, Nozu F, Yoshikawa N, and Mitamura K. Hemodynamics in the colonic mucosa of rats with dextran sulfate-induced colitis in the early phase. J Gastroenterol. 1996; 31: 512–17. [PubMed: 8844471] [Cross Ref]
72.
Harris NR, Carter PR, Lee S, Watts MN, Zhang S, Grisham MB. Association between blood flow and inflammatory state in a T-cell transfer model of inflammatory bowel disease in mice. Inflamm Bowel Dis. 2010; 16: 776–82. [PMC free article: PMC2856723] [PubMed: 19821506] [Cross Ref]
73.
Hatoum OA, Binion DG, Otterson MF, Gutterman DD. Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. Gastroenterology. 2003; 125: 58–69. [PubMed: 12851871]
74.
Feletou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009; 156: 545–62. [PMC free article: PMC2697708] [PubMed: 19187341] [Cross Ref]
75.
Gonzalez MA, Selwyn AP. Endothelial function, inflammation, and prognosis in cardiovascular disease. Am J Med. 2003; 115 Suppl 8A: 99S–106S. [PubMed: 14678874] [Cross Ref]
76.
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109 (23 Suppl 1): III27–32. [PubMed: 15198963] [Cross Ref]
77.
Huang AL, Vita JA. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med. 2006; 16: 15–20. [PMC free article: PMC2715166] [PubMed: 16387625] [Cross Ref]
78.
Vila E, Salaices M. Cytokines and vascular reactivity in resistance arteries. Am J Physiol Heart Circ Physiol. 2005; 288: H1016–21. [PubMed: 15706038]
79.
Banda MA, Lefer DJ, Granger DN. Postischemic endothelium-dependent vascular reactivity is preserved in adhesion molecule-deficient mice. Am J Physiol. 1997; 273: H2721–25. [PubMed: 9435608]
80.
Lehr HA, Bittinger F, Kirkpatrick CJ. Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol. 2000; 190: 373–86. [PubMed: 10685071]
81.
Adams DH, Nash GB. Disturbance of leucocyte circulation and adhesion to the endothelium as factors in circulatory pathology. Br J Anaesth. 1996; 77: 17–31. [PubMed: 8703627]
82.
Skalak R, Skalak TC. Flow behavior of leukocytes in small tubes. In: Physiology & pathophysiology of leukocyte adhesion (DN Granger & GW Schmid-Schonbein, eds.), Oxford University Press, New York, 1995, Chapt. 4, pp. 97–115.
83.
Hansell P, Borgstrom P, Arfors KE. Pressure-related capillary leukostasis following ischemia-reperfusion or hemorrhagic shock. Am J Physiol. 1993; 265: H381–88. [PubMed: 8342655]
84.
Harris AG, Skalak TC. Leukocyte cytoskeletal structure determines capillary plugging and network resistance in skeletal muscle. Am J Physiol. 1993; 265: H1670–75. [PubMed: 8238578]
85.
Horie Y, Wolf R, Miyasaka M, Anderson DC, Granger DN. Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology. 1996; 111(3): 666–73. [PubMed: 8780571] [Cross Ref]
86.
Horie Y, Wolf R, Anderson DC, Granger DN. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia/reperfusion. J Clin Invest. 1997; 99: 781–88. [PMC free article: PMC507863] [PubMed: 9045883] [Cross Ref]
87.
Horie Y, Wolf R, Russell J, Shanley TP, Granger DN. Role of Kupffer cells in gut ischemia /reperfusion-induced hepatic microvascular dysfunction in mice. Hepatology. 1997; 26: 1499–05. [PubMed: 9397990] [Cross Ref]
88.
Horie Y, Wolf R, Chervenak RP, Jennings SR, Granger DN. T-lymphocytes contribute to hepatic leukostasis and hypoxic stress induced by gut ischemia-reperfusion. Microcirculation. 1999; 6: 267–80. [PubMed: 10654278]
89.
Jerome SN, Kong L, Korthuis RJ. Microvascular dysfunction in postischemic skeletal muscle. J Invest Surg. 1994; 7: 3–16. [PubMed: 8003463] [Cross Ref]
90.
Engler RL, Dahlgren MD, Morris DD, Peterson MA, Schmid-Schonbein GW. Role of leukocytes in the response to acute myocardial ischemia and reflow in dogs. Am J Physiol. 1986; 251: H314–22. [PubMed: 3740286]
91.
Jerome SN, Akimitsu T, Korthuis RJ. Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. Am J Physiol. 1994; 267: H1329–36. [PubMed: 7943378]
92.
Koutroubakis IE, Tsiolakidou G, Karmiris K, Kouroumalis EA. Role of angiogenesis in inflammatory bowel disease. Inflamm Bowel Dis. 2006; 12: 515–23. [PubMed: 16775497] [Cross Ref]
93.
Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med. 2001; 125: 67–71. [PubMed: 11151055]
94.
Arenberg DA, Strieter RM. Angiogenesis. In Inflammation: Basic Principles and Clinical Correlates (pp. 851–864), 3rd edition edited by John I. Gallin and Ralph Snyderman. Lippincott Williams & Wilkins, Philadelphia, 1991.
95.
Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008; 11: 109–19. [PMC free article: PMC2480489] [PubMed: 18293091] [Cross Ref]
96.
David Dong ZM, Aplin AC, Nicosia RF. Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells. Curr Pharm Des. 2009; pp. 365–79. [PubMed: 19199964] [Cross Ref]
97.
Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy. 2005; 4: 3–8. [PubMed: 15720228] [Cross Ref]
98.
Majno G. Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol. 1998; 153: 1035–39. [PMC free article: PMC1853039] [PubMed: 9777935]
99.
Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, Pepper MS, Zawieja DC, Ran S. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 2010; 115: 418–29. [PMC free article: PMC2808162] [PubMed: 19901262]
100.
Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. 2005; 3: 1835–42. [PubMed: 16102050] [Cross Ref]
101.
Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J. 2009; 276: 4636–43. [PubMed: 19664071] [Cross Ref]
102.
Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, Repici A, Sturm A, Malesci A, Panes J, Yla-Herttuala S, Fiocchi C, Danese S. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology. 2009; 136: 585–95. [PubMed: 19013462] [Cross Ref]
103.
Chidlow JH Jr, Langston W, Greer JJ, Ostanin D, Abdelbaqi M, Houghton J, Senthilkumar A, Shukla D, Mazar AP, Grisham MB, Kevil CG. Differential angiogenic regulation of experimental colitis. Am J Pathol. 2006; 169: 2014–30. [PMC free article: PMC1762465] [PubMed: 17148665] [Cross Ref]
104.
Chidlow JH Jr, Shukla D, Grisham MB, Kevil CG. Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G5–G18. [PubMed: 17463183] [Cross Ref]
105.
Nieves BJ, D’Amore PA, Bryan BA. The function of vascular endothelial growth factor. Biofactors. 2009; 35: 332–37. [PubMed: 19415738] [Cross Ref]
106.
Ng YS, Krilleke D, Shima DT. VEGF function in vascular pathogenesis. Exp Cell Res. 2006; 312: 527–37. [PubMed: 16330026] [Cross Ref]
107.
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005; 23: 1011–27. [PubMed: 15585754]
108.
Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol. 2008; 28: 1928–36. [PMC free article: PMC2735456] [PubMed: 18757292] [Cross Ref]
109.
Balestrieri ML, Balestrieri A, Mancini FP, Napoli C. Understanding the immunoangiostatic CXC chemokine network. Cardiovasc Res. 2008; 78: 250–56. [PubMed: 18252760] [Cross Ref]
110.
Strieter RM, Belperio JA, Phillips RJ, Keane MP. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol. 2004; 14: 195–200. [PubMed: 15246055]
111.
Ushio-Fukai M, Urao N. Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal. 2009; 11: 2517–33. [PMC free article: PMC2821135] [PubMed: 19309262] [Cross Ref]
112.
Ushio-Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem. 2004; 264: 85–97. [PubMed: 15544038] [Cross Ref]
113.
Sessa WC. Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost. 2009; 7 Suppl 1: 35–37. [PubMed: 19630764] [Cross Ref]
114.
Chidlow JH Jr, Greer JJ, Anthoni C, Bernatchez P, Fernandez-Hernando C, Bruce M, Abdelbaqi M, Shukla D, Granger DN, Sessa WC, Kevil CG. Endothelial caveolin-1 regulates pathologic angiogenesis in a mouse model of colitis. Gastroenterology. 2009; 136: 575–84. [PMC free article: PMC3667411] [PubMed: 19111727] [Cross Ref]
115.
Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010; 140: 460–76. [PubMed: 20178740] [Cross Ref]
116.
Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 2004; 25: 387–95. [PubMed: 15207507] [Cross Ref]
117.
Takahashi M, Yoshimoto T, Kubo H. Molecular mechanisms of lymphangiogenesis. Int J Hematol. 2004; 80: 29–34. [PubMed: 15293565] [Cross Ref]
118.
Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009; 21: 154–65. [PubMed: 19230644] [Cross Ref]
119.
Alexander JS, Ganta VC, Jordan PA, Witte MH. Gastrointestinal lymphatics in health and disease. Pathophysiology 2009 (Dec 16.) Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Bioi. 1994; 55: 662–75.
120.
Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyteendothelial cell adhesion. J Leukoc Bioi. 1994; 55: 662–75. [PubMed: 8182345]
121.
Panés J, Granger DN. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology. 1998; 114: 1066–90. [PubMed: 9558298] [Cross Ref]
122.
Petri B, Phillipson M, Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol. 2008; 180: 6439–46. [PubMed: 18453558]
123.
Gavins F, Yilmaz G, Granger DN. The evolving paradigm for blood cell-endothelial cell interactions in the cerebral microcirculation. Microcirculation. 2007; 14: 667–81. [PubMed: 17885993] [Cross Ref]
124.
Chen L, Lin SX, Amin S, Overbergh L, Maggiolino G, Chan LS. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model. Immunol Cell Biol. 2010; 88: 334–42. [PMC free article: PMC2841723] [PubMed: 20065994] [Cross Ref]
125.
Kum WW, Lee S, Grassl GA, Bidshahri R, Hsu K, Ziltener HJ, Finlay BB. Lack of functional P-selectin ligand exacerbates Salmonella serovar typhimurium infection. J Immunol. 2009; 182: 6550–61. [PubMed: 19414810] [Cross Ref]
126.
Woollard KJ, Suhartoyo A, Harris EE, Eisenhardt SU, Jackson SP, Peter K, Dart AM, Hickey MJ, Chin-Dusting JP. Pathophysiological levels of soluble P-selectin mediate adhesion of leukocytes to the endothelium through Mac-1 activation. Circ Res. 2008; 103:1128–38. [PubMed: 18818407] [Cross Ref]
127.
Kakkar AK, Lefer DJ. Leukocyte and endothelial adhesion molecule studies in knockout mice. Curr Opin Pharmacol. 2004; 4: 154–58. [PubMed: 15063359] [Cross Ref]
128.
Bienvenu K, Granger DN, Perry MA. Flow dependence of leukocyte-endothelial cell adhesion in postcapillary venules. In: Physiology and Pathophysiology of Leukocyte Adhesion. (Granger DN & Schmid-Schonbein G, eds.), Oxford University Press, New York, 1995, pp. 278–93.
129.
Steinhoff G, Behrend M, Schrader B, Duijvestijn AM, Wonigeit K. Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD 62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2, and LFA-3. Am J Pathol. 1933; 142: 481–88. [PMC free article: PMC1886730] [PubMed: 8434643]
130.
Watanabe K, Suematsu M, Iida M, Takashi K, Iisuka Y, Suzuki H, Suzuki M, Tsuchiya M, Tsurufuji S. Effect of rat CINC/gro, a member of the interleukin-8 family, on leukocytes in microcirculation of the rat mesentery. Exp Mol Pathol. 1992; 56: 60–69. [PubMed: 1547869] [Cross Ref]
131.
Keelan ETM, License ST, Peters AM, Binns RM, Haskard DO. Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am J Physiol. 1994; 266: H279–90. [PubMed: 7508207]
132.
Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN. Heterogeneity of expression of E- and P-selectins in vivo. Circ Res. 1996; 79: 560–69. [PubMed: 8781489]
133.
Eppihimer MJ, DN Granger. Endothelial cell adhesion molecule expression in acutely inflamed tissues. In: Yearbook of Intensive Care and Emergency Medicine (Vincent JL, ed.). Springer-Verlag, Berlin: 1997, pp. 52–62.
134.
Bauer P, Welbourne T, Shigematsu T, Russell J, Granger DN. Endothelial expression of selectins during endotoxin preconditioning. Am J Physiol Reg Integr Comp Physiol. 2000; 279: R2015–21. [PubMed: 11080064]
135.
Hickey MJ, Kanwar S, McCafferty D-M, Granger DN, Eppihimer MJ, Kubes P. Varying Roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J Immunol. 1999; 162: 1137–43. [PubMed: 9916744]
136.
Liu L, Kubes P. Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action. Thromb Haemost. 2003; 89: 213–20. [PubMed: 12574798]
137.
Carvalho-Tavares J, Hickey MJ, Hutchison J, Michaud J, Sutcliffe IT, Kubes P. A role for platelets and endothelial selectins in tumor necrosis factor-alpha-induced leukocyte recruitment in the brain microvasculature. Circ Res. 2000; 87: 1141–48. [PubMed: 11110771]
138.
Eppihimer MJ, Russell J, Anderson DC, Epstein CJ, Laroux S, Granger DN. Modulation of P-selectin expression in the postischemic intestinal microvasculature. Am J Physiol. 1997; 273: G1326–32. [PubMed: 9435558]
139.
McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002; 14: 581–86. [PubMed: 12231353] [Cross Ref]
140.
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7: 678–89. [PubMed: 17717539] [Cross Ref]
141.
Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood. 1996; 88: 3010–21. [PubMed: 8874199]
142.
Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN. Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G1054–60. [PubMed: 17884975] [Cross Ref]
143.
Rivera-Nieves J, Burcin TL, Olson TS, Morris MA, McDuffie M, Cominelli F, Ley K. Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J Exp Med. 2006; 203: 907–17. [PMC free article: PMC2118267] [PubMed: 16567389] [Cross Ref]
144.
Panés J, Perry MA, Anderson DC, Manning A, Leone B, Cepinskas G, Rosenbloom CL, Miyasaka M, Kvietys PR, Granger DN. Regional differences in constitutive and induced ICAM-1 expression in vivo. Am J Physiol. 1995; 269: H1955–64. [PubMed: 8594904]
145.
Henninger DD, Panés J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997; 158: 1825–32. [PubMed: 9029122]
146.
Komatsu S, Berg RD, Russell JM, Nimura Y, Granger DN. Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells. Am J Physiol Gastrointest Liver Physiol. 2000; 279: G186–91. [PubMed: 10898762]
147.
Komatsu S, Flores S, Gerritsen ME, Anderson DC, Granger DN. Differential Up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice. Am J Pathol. 1997; 151: 205–14. [PMC free article: PMC1857924] [PubMed: 9212746]
148.
Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006; 368: 33–47. [PubMed: 16530177] [Cross Ref]
149.
Rahman A, Fazal F. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal. 2009; 11: 823–39. [PMC free article: PMC2850296] [PubMed: 18808323] [Cross Ref]
150.
Granger DN, Stokes KY, Shigematsu T, Cerwinka WH, Tailor A, Krieglstein CF. Splanchnic ischaemia-reperfusion injury: mechanistic insights provided by mutant mice. Acta Physiol Scand. 2001; 173: 83–91. [PubMed: 11678730] [Cross Ref]
151.
DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 2009; 30: 547–56. [PMC free article: PMC2767453] [PubMed: 19783480]
152.
Hickey MJ, Kubes P. Role of nitric oxide in regulation of leucocyte-endothelial cell interactions. Exp Physiol. 1997; 82: 339–48. [PubMed: 9129948]
153.
Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, Schelling ME, Granger HJ, Granger DN. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol. 1989; 257: H1740–45. [PubMed: 2556051]
154.
Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991; 88: 4651–55. [PMC free article: PMC51723] [PubMed: 1675786] [Cross Ref]
155.
Kubes P, Kurose I, Granger DN. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am J Physiol. 1994; 267: H931–37. [PubMed: 7522408]
156.
Kurose I, Wolf R, Grisham MB, Aw TY, Specian RD, Granger DN. Microvascular responses to inhibition of nitric oxide production. Role of active oxidants. Circ Res. 1995; 76: 30–39. [PubMed: 7528112]
157.
Cronstein BN, Levin RI, Belanoff J, Weissman G, Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986; 78:760–70. [PMC free article: PMC423670] [PubMed: 3745437] [Cross Ref]
158.
Cronstein BN, Levin RI, Philips M, Hinschhorn R, Abramson SB, Weissman G. Neutrophil adherence to endothelium is enhanced via adenosine Al-receptors and inhibited by adenosine A2-receptors. J Immunol. 1992; 148: 2201–06. [PubMed: 1347551]
159.
Asako H, Wolf R, Granger DN. Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology. 1993; 104: 31–37. [PubMed: 8380395]
160.
Asako H, Kubes P, Baethge BA, Wolf RE, Granger DN. Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation. 1992; 16: 45–56. [PubMed: 1312060] [Cross Ref]
161.
Nolte D, Lehr HA, Messmer K. Adenosinc inhibits postischemic leukocyte-endothelial interactions in postcapillary venules of the hamster. Am J Physiol. 1991; 261: H651–55. [PubMed: 1887915]
162.
Cronstein BN, Eberle MA, Gruber HE, Levin RI. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA. 1991; 88: 2441–45. [PMC free article: PMC51248] [PubMed: 2006182] [Cross Ref]
163.
Erlansson M, Bergqvist D, Persson NH, Svensjo E. Modification of post-ischemic increase of leukocyte adhesion and vascular permeability in the hamster by iloprost. Prostaglandins. 1991; 41: 157–68. [PubMed: 1708155]
164.
Atherton A, Born GVR. Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol. 1973; 233: 157–65. [PMC free article: PMC1350545] [PubMed: 4759098]
165.
Perry MA, Granger DN. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest. 1991; 87: 1798–1804. [PMC free article: PMC295296] [PubMed: 1673690] [Cross Ref]
166.
Nazziola E, House SD. Effects of hydrodynamic and leukocyte-endothelium specificity on leukocyte-endothelium interactions. Microvasc Res. 1992; 44: 127–42. [PubMed: 1474924] [Cross Ref]
167.
Bienvenu K, Russell J, Granger DN. Leukotniene B4 mediates shear rate-dependent leukocyte adhesion in mesenteric venules. Circ Res. 1992; 71: 906–11. [PubMed: 1355410]
168.
Firrel JC, Lipowsky HH. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol. 1989; 256: H1667–74. [PubMed: 2735435]
169.
Ley K, Gaehtgens P. Endothelial, not hemodynamic, differences are responsible for preferential leukocyte rolling in rat mesenteric venules. Circ Res. 1991; 69: 1034–41. [PubMed: 1934331]
170.
van der Veen BS, de Winther MP, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal. 2009; 11:2899–37. [PubMed: 19622015] [Cross Ref]
171.
Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther. 2006; 111: 16–26. [PubMed: 16476484] [Cross Ref]
172.
Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST. Oxidative autoactivation of latent collagenase by human neutrophils. Science. 1985; 227: 747–49. [PubMed: 2982211] [Cross Ref]
173.
Rowe RG, Weiss SJ. Breaching the basement membrane: who, when and how? Trends Cell Biol. 2008; 18: 560–74. [PubMed: 18848450] [Cross Ref]
174.
Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989; 320: 365–76. [PubMed: 2536474]
175.
Granger DN, Grisham MB, Kvietys PR. Mechanisms of microvascular injury. In: Physiology of the Gastrointestinal Tract (Johnson LR, ed.), Raven Press, New York, 1994; Chapt. 49: 1693–1722.
176.
Robinson JM. Phagocytic leukocytes and reactive oxygen species. Histochem Cell Biol. 2009; 131: 465–69. [PubMed: 19224236]
177.
Cepinskas G, Noseworthy R, Kvietys PR. Transendothelial neutrophil migration. Role of neutrophil-derived proteases and relationship to transendothelial protein movement. Circ Res. 1997; 81: 618–26. [PubMed: 9314844]
178.
Weiss SJ, Peppin GJ. Collagenolytic metalloenzymes of the human neutrophil. Characteristics, regulation and potential function in vivo. Biochem Pharmacol. 1986; 35: 3189–97. [PubMed: 3021164]
179.
Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation. 2009; 16: 657–66. [PubMed: 19905966] [Cross Ref]
180.
Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation. 2000; 101: 1500–02. [PubMed: 10747340]
181.
Celi A, Lorenzet R, Furie B, Furie BC. Platelet-leukocyte-endothelial cell interaction on the blood vessel wall. Semin Hematol. 1997; 34: 327–35. [PubMed: 9347583]
182.
Klinger MHF. Inflammation. In: Platelets (Michelson AD, ed.), Elsevier Academic Press, San Diego, 2000, Chapt. 31: 459–67.
183.
Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005; 115(12): 3378–84. [PMC free article: PMC1297269] [PubMed: 16322783] [Cross Ref]
184.
Tailor A, Cooper D, Granger DN. Platelet-vessel wall interactions in the microcirculation. Microcirculation. 2005; 12: 275–85. [PubMed: 15814436] [Cross Ref]
185.
Tabuchi A, Kuebler WM. Endothelium-platelet interactions in inflammatory lung disease. Vascul Pharmacol. 2008; 49: 141–50. [PubMed: 18625343] [Cross Ref]
186.
Rumbaut RE, Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. Colloquim Series in Integrated Systems Physiology: From Molecule to Function (Granger DN & Granger JP, eds.), Morgan-Claypool Life Sciences, 2010. [Cross Ref]
187.
Yoshida H, Granger DN. Inflammatory bowel disease: a paradigm for the link between coagulation and inflammation. Inflamm Bowel Dis. 2009; 15: 1245–55. [PMC free article: PMC2713811] [PubMed: 19253306] [Cross Ref]
188.
André P, Denis CV, Ware J, Saffaripour S, Hynes RO, Ruggeri ZM, Wagner DD. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood. 2000; 96: 3322–28. [PubMed: 11071623]
189.
Sun G, Chang WL, Li J, Berney SM, Kimpel D, van der Heyde HC. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect Immun. 2003; 71: 6553–61. [PMC free article: PMC219602] [PubMed: 14573677] [Cross Ref]
190.
Granger DN. Hypercholesterolemia promotes P-selectin-dependent platelet-endothelial cell adhesion in postcapillary venules. Arterioscler Thromb Vasc Biol. 2003; 23:675–80. [PubMed: 12615684]
191.
Collins CE, Cahill MR, Newland AC, et al. Platelets circulate in an activated state in inflammatory bowel disease. Gastroenterology. 1994; 106: 840–45. [PubMed: 8143990]
192.
Danese S, Katz JA, Saibeni S, et al. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients. Gut. 2003; 52: 1435–41. [PMC free article: PMC1773814] [PubMed: 12970136]
193.
Collins CE, Rampton DS. Review article: platelets in inflammatory bowel disease—pathogenetic role and therapeutic implications. Aliment Pharmacol Ther. 1997; 11: 237–47. [PubMed: 9146760] [Cross Ref]
194.
Webberley MJ, Hart MT, Melikian V. Thromboembolism in inflammatory bowel disease: role of platelets. Gut. 1993; 34: 247–51. [PMC free article: PMC1373979] [PubMed: 8432482] [Cross Ref]
195.
Stokes KY, Calahan L, Hamric CM, Russell JM, Granger DN. CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. Am J Physiol Heart Circ Physiol. 2009; 296: H689–97. [PMC free article: PMC2660234] [PubMed: 19112095] [Cross Ref]
196.
André P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD. CD40L stabilizes arterial thrombi by a beta3 integrin—dependent mechanism. Nat Med. 2002; 8: 247–52. [PubMed: 11875495]
197.
Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC. CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol. 2008; 142: 627–37. [PMC free article: PMC2886720] [PubMed: 18537971] [Cross Ref]
198.
Stokes KY, Russell JM, Jennings MH, Alexander JS, Granger DN. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic Biol Med. 2007; 43: 22–30. [PMC free article: PMC1975956] [PubMed: 17561090] [Cross Ref]
199.
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010 Mar 21. [Epub ahead of print] [PubMed: 20306272] [Cross Ref]
200.
Arthur JF, Gardiner EE, Kenny D, Andrews RK, Berndt MC. Platelet receptor redox regulation. Platelets. 2008; 19: 1–8. [PubMed: 18231933] [Cross Ref]
201.
Suzuki K, Sugimura K, Hasegawa K, et al. Activated platelets in ulcerative colitis enhance the production of reactive oxygen species by polymorphonuclear leukocytes. Scand J Gastroenterol. 2001; 36: 1301–06. [PubMed: 11761021] [Cross Ref]
202.
Palmantier R, Borgeat P. Transcellular metabolism of arachidonic acid in platelets and polymorphonuclear leukocytes activated by physiological agonists: enhancement of leukotriene B4 synthesis. Adv Exp Med Biol. 1991; 314: 73–89. [PubMed: 1667970]
203.
Herd CM, Page CP. Pulmonary immune cells in health and disease: platelets. Eur Respir J. 1994; 7: 1145–60. [PubMed: 7925886]
204.
Mori M, Salter JW, Vowinkel T, et al. Molecular determinants of the prothrombogenic phenotype assumed by inflamed colonic venules. Am J Physiol Gastrointest Liver Physiol. 2005; 288: G920–26. [PubMed: 15550557] [Cross Ref]
205.
Danese S, de la Motte C, Sturm A, et al. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology. 2003; 124: 1249–64. [PubMed: 12730866] [Cross Ref]
206.
Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol. 2003; 285: H1791–96. [PubMed: 14561675]
207.
Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007; 204: 2449–60. [PMC free article: PMC2118469] [PubMed: 17875676] [Cross Ref]
208.
Cerwinka WH, Cooper D, Krieglstein CF, Ross CR, McCord JM, Granger DN. Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol. 2003; 284: H535–41. [PubMed: 12388324]
209.
Ishikawa M, Stokes KY, Zhang JH, Nanda A, Granger DN. Cerebral microvascular responses to hypercholesterolemia: roles of NADPH oxidase and P-selectin. Circ Res. 2004; 94: 239–44. [PubMed: 14670846] [Cross Ref]
210.
Wood KC, Hebbel RP, Granger DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol. 2004; 286: H1608–14. [PubMed: 14704223] [Cross Ref]
211.
Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thrombosis Res. 2004; 114: 447–53. [PubMed: 15507277] [Cross Ref]
212.
Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood. 1998; 92: 507–15. [PubMed: 9657750]
213.
Massberg S, Enders G, Matos FC, Tomic LI, Leiderer R, Eisenmenger S, Messmer K, Krombach F. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood. 1999; 94: 3829–38. [PubMed: 10572098]
214.
Cooper D, Chitman KD, Williams MC, Granger DN. Time-dependent platelet-vessel wall interactions induced by intestinal ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol. 2003; 284: G1027–33. [PubMed: 12736150]
215.
Ishikawa M, Cooper D, Russell J, Salter JW, Zhang JH, Nanda A, Granger DN. Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke. 2003; 34: 1777–82. doi. [PubMed: 12775881] [Cross Ref]
216.
Cooper D, Russell J, Chitman KD, Williams MC, Wolf RE, Granger DN. Leukocyte dependence of platelet adhesion in postcapillary venules. Am J Physiol Heart Circ Physiol. 2004; 286: H1895–900. [PubMed: 14715510] [Cross Ref]
217.
Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN. Mechanisms of platelet and leukocyte recruitment in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G1054–60. [PubMed: 17884975] [Cross Ref]
218.
Tailor A, Granger DN. Hypercholesterolemia promotes leukocyte-dependent platelet adhesion in murine postcapillary venules. Microcirculation. 2004; 11: 597–603. [PubMed: 15513869] [Cross Ref]
219.
Rosin C, Brunner M, Lehr S, Quehenberger P, Panzer S. The formation of platelet-leukocyte aggregates varies during the menstrual cycle. Platelets. 2006; 17: 61–66. [PubMed: 16308189]
220.
Lehr HA, Messmer K. The microcirculation in atherogenesis. Cardiovasc Res. 1996; 32:781–88. [PubMed: 8915196]
221.
Lehr HA. Microcirculatory dysfunction induced by cigarette smoking. Microcirculation. 2000; 7: 367–84. [PubMed: 11142334]
222.
Irving PM, Macey MG, Shah U, Webb L, Langmead L, Rampton DS. Formation of platelet-leukocyte aggregates in inflammatory bowel disease. Inflamm Bowel Dis. 2004; 10: 361–72. [PubMed: 15475744]
223.
Li N, Hu H, Lindqvist M, Wikström-Jonsson E, Goodall AH, Hjemdahl P. Platelet-leukocyte cross talk in whole blood. Arterioscler Thromb Vasc Biol. 2000; 20: 2702–08. [PubMed: 11116075]
224.
McGregor L, Martin J, McGregor JL. Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci. 2006; 11:830–37. [PubMed: 16146774] [Cross Ref]
225.
Rumbaut RE, Slaaf DW, Burns AR. Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation. 2005; 12: 259–74. [PubMed: 15814435] [Cross Ref]
226.
Egbrink MG, Van Gestel MA, Broeders MA, Tangelder GJ, Heemskerk JM, Reneman RS, Slaaf DW. Regulation of microvascular thromboembolism in vivo. Microcirculation. 2005; 12: 287–300. [PubMed: 15814437]
227.
Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008; 359: 938–49. [PubMed: 18753650] [Cross Ref]
228.
Rumbaut RE, Bellers RV, Randhawa JK, Shrimpton CN, Dasgupta S, Dong JF, Burns AR. Endotoxin enhances microvascular thrombosis in mouse cremaster muscle via a TLR-4 dependent, neutrophil-independent mechanism. Am J Physiol. 2006; 290: H1671–79. [PubMed: 16284241]
229.
Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, oude Egbrink MG. Hypercholesterolemia enhances thromboembolism in arterioles but not venules: complete reversal by L-arginine. Arterioscler Thromb Vasc Biol. 2002; 22: 680–85. [PubMed: 11950710] [Cross Ref]
230.
Anthoni C, Russell J, Wood KC, Stokes KY, Vowinkel T, Kirchhofer D, Granger DN: Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med. 2007; 204: 1595–1601. [PMC free article: PMC2118639] [PubMed: 17562818] [Cross Ref]
231.
Patel KN, Soubra SH, Lam FW, Rodriguez MA, Rumbaut RE. Polymicrobial sepsis and endotoxemia promote microvascular thrombosis via distinct mechanisms. J Thromb Haemost. 2010 Mar 13. [Epub ahead of print] [PMC free article: PMC3142355] [PubMed: 20345726] [Cross Ref]
232.
Lominadze D, Joshua IG, Schuschke DA. In vivo platelet thrombus formation in microvessels of spontaneously hypertensive rats. Am J Hypertens. 1997; 10: 1140–46. [PubMed: 9370385] [Cross Ref]
233.
Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas. 2004; 47: 305–14. [PubMed: 15063484]
234.
Esmon CT. The interactions between inflammation and coagulation. Br J Haematol. 2005; 131: 417–30. [PubMed: 16281932] [Cross Ref]
235.
Xu J, Lupu F, Esmon CT. Inflammation, innate immunity and blood coagulation. Hamostaseologie. 2010; 30: 5–9. [PubMed: 20162248]
236.
Levi M, van der Poll T. Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med. 2005; 15: 254–59. [PubMed: 16226680] [Cross Ref]
237.
Altieri DC. Interface between inflammation and coagulation. In: Physiology of Inflammation (Ley K, ed.), Oxford University Press, New York, 2001; Chapt. 19: 402–22.
238.
Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 2007; 178: 6017–22. [PubMed: 17475823]
239.
Twig G, Zandman-Goddard G, Szyper-Kravitz M, Shoenfeld Y. Systemic Thromboembolism in inflammatory bowel disease. Mechanisms and clinical applications. Ann NY Acad Sci. 2005; 1051: 166–73. [PubMed: 16126956] [Cross Ref]
240.
Danese S, Papa A, Saibeni S, Repici A, Malesci A, Vecchi M. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am J Gastroenterol. 2007; 102: 174–86. [PubMed: 17100967] [Cross Ref]
241.
Yoshida H, Russell J, Stokes KY, Yilmaz CE, Esmon CT, Granger DN. Role of the protein C pathway in the extraintestinal thrombosis associated with murine colitis. Gastroenterology. 2008; 135: 882–88. [PMC free article: PMC2601716] [PubMed: 18514072] [Cross Ref]
242.
Yoshida H, Russell J, Granger DN. Thrombin mediates the extraintestinal thrombosis associated with experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2008; 295:G904–08. [PMC free article: PMC2584821] [PubMed: 18772359] [Cross Ref]
243.
Ostrovsky L, Woodman RC, Payne D, et al. Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion. Circulation. 1997; 96: 2302–10. [PubMed: 9337204]
244.
Sharma L, Melis E, Hickey MJ, et al. The cytoplasmic domain of tissue factor contributes to leukocyte recruitment and death in endotoxemia. Am J Pathol. 2004; 165: 331–40. [PMC free article: PMC1618541] [PubMed: 15215187]
245.
Arnold CS, Parker C, Upshaw R, et al. The antithrombotic and anti-inflammatory effects of BCX-3607, a small molecule tissue factor/factor VIIa inhibitor. Thromb Res. 2006; 117:343–49. [PubMed: 16378835] [Cross Ref]
246.
Levi M, Dörffler-Melly J, Reitsma P, et al. Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. Blood. 2003; 101: 4823–27. [PubMed: 12609841] [Cross Ref]
247.
Rumbaut RE, Randhawa JK, Smith CW, Burns AR. Mouse cremaster venules are predisposed to light/dye-induced thrombosis independent of wall shear rate, CD18, ICAM-1, or P-selectin. Microcirculation. 2004; 11: 239–47. [PubMed: 15280078] [Cross Ref]
248.
Senchenkova EY, Granger DN. T-lymphocytes contribute to angiotensin II-mediated thrombosis in cremaster muscle arterioles. FASEB J. 2010; 24: 589.3.
249.
Woldhuis B, Tangelder GJ, Slaaf DW, Reneman RS. Concentration profile of blood platelets in arterioles and venules. Am J Physiol. 1992; H1217–23. [PubMed: 1566903]
250.
Kuijpers MJ, Munnix IC, Cosemans JM, Vlijmen BV, Reutelingsperger CP, Egbrink MO, Heemskerk JW. Key role of platelet procoagulant activity in tissue factor-and collagen-dependent thrombus formation in arterioles and venules in vivo differential sensitivity to thrombin inhibition. Microcirculation. 2008; 15: 269–82. [PubMed: 18464157] [Cross Ref]
251.
Clark, SR, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007; 13: 463–69. [PubMed: 17384648] [Cross Ref]
252.
Hidalgo, A, et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009; 15: 384–91. [PMC free article: PMC2772164] [PubMed: 19305412] [Cross Ref]
253.
Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost. 2008; 6: 415–20. [PubMed: 18088344] [Cross Ref]
254.
Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986; 163: 740–45. [PMC free article: PMC2188058] [PubMed: 3753996]
255.
Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res. 2005; 96: 1233–39. [PubMed: 15920023] [Cross Ref]
256.
Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood. 1990; 76: 2024–29. [PubMed: 2173634]
257.
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal. 2006; 2: 409–30. [PMC free article: PMC2254478] [PubMed: 18404480] [Cross Ref]
258.
Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC. CD39 and control of cellular immune responses. Purinergic Signal. 2007; 3: 171–80. [PMC free article: PMC2096766] [PubMed: 18404431] [Cross Ref]
259.
Dwyer KM, Robson SC, Nandurkar HH, Campbell DJ, Gock H, Murray-Segal LJ, Fisicaro N, Mysore TB, Kaczmarek E, Cowan PJ, d’Apice AJ. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest. 2004; 113: 1440–46. [PMC free article: PMC406523] [PubMed: 15146241]
260.
Vowinkel T, Anthoni C, Wood KC, Stokes KY, Russell J, Gray L, Bharwani S, Senninger N, Alexander JS, Krieglstein CF, Grisham MB, Granger DN. CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon. Gastroenterology. 2007; 132: 955–65. [PubMed: 17324402] [Cross Ref]
261.
Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C.The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009; 54: 669–77. [PubMed: 19679244]
262.
Freedman JE. Oxidative stress and platelets. Arterioscler Thromb Vasc Biol. 2008; 28: s11–s16. [PubMed: 18174453] [Cross Ref]
263.
Rosenblum WI, El Sabban F. Dimethylsulfoxide and glycerol, hydroxyl radical scavengers, impair platelet aggregation within and eliminate the accompanying vasodilation of, injured mouse pial arterioles. Stroke. 1982; 13: 35–39. [PubMed: 7064177]
264.
Peire MA, Puig-Parallada P. Oxygen free radicals and nitric oxide are involved in the thrombus growth produced by iontophoresis of ADP. Pharmacol Res. 1998; 38: 353–56. [PubMed: 9806814] [Cross Ref]
265.
Lindberg RA, Slaaf DW, Lentsch AB, Miller FN. Involvement of nitric oxide and cyclooxygenase products in photoactivation-induced microvascular occlusion. Microvasc Res. 1994; 47: 203–21. [PubMed: 7517491] [Cross Ref]
266.
Sasaki Y, Seki J, Giddings JC, Yamamoto J. Effects of NO-donors on thrombus formation and microcirculation in cerebral vessels of the rat. Thromb Haemostasis. 1996; 76: 111–17. [PubMed: 8819262]
267.
Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, oude Egbrink MG. Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterioscler Thromb Vasc Biol. 1998; 18: 139–45. [PubMed: 9445268]
268.
Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hypermeability: implications in inflammation. Expert Rev Mol Med. 2009; Jun 30; 11: e19. [PMC free article: PMC2828491] [PubMed: 19563700]
269.
Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol. 2007; 7: 467–77. [PubMed: 17525755] [Cross Ref]
270.
Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost 2008; 6: 1453–60. [PMC free article: PMC2868262] [PubMed: 18647230] [Cross Ref]
271.
Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem. 2001; 49: 419–32. [PubMed: 11259444]
272.
Nagy J, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008; 11: 109–19. [PMC free article: PMC2480489] [PubMed: 18293091] [Cross Ref]
273.
Bogatcheva NV, Verin AD. The role of the cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res. 2008; 76: 202–27. [PMC free article: PMC2586393] [PubMed: 18657550]
274.
Pilati CF. Macromolecular transport in canine coronary microvasculature. Am J Physiol. 1990; 258: H748–53. [PubMed: 2316690]
275.
Victorino GP, Ramirez RM, Chong TJ, Curran B, Sadjadi J. Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate. Am J Physiol Heart Circ Physiol. 2008; 295: H2164–71. [PMC free article: PMC2614570] [PubMed: 18790838] [Cross Ref]
276.
Oliver MG, Specian RD, Perry MA, Granger DN. Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion. Inflammation. 1991; 15: 331–46. [PubMed: 1684573] [Cross Ref]
277.
Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2009; 137:695–702. [PMC free article: PMC2670927] [PubMed: 19258091] [Cross Ref]
278.
Khandoga AG, Khandoga A, Anders HJ, Krombach F. Postischemic vascular permeability requires both TLR-2 and TLR-4, but only TLR-2 mediates the transendothelial migration of leukocytes. Shock. 2009; 31: 592–98. [PubMed: 19008784] [Cross Ref]
279.
Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol. 1987; 253: H699–703. [PubMed: 3631303]
280.
Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994; 74: 376–82. [PubMed: 8118946]
281.
Nagai M, Terao S, Yilmaz G, Yilmaz CE, Esmon CT, Watanabe E et al. Roles of inflammation and the activated protein C pathway in the brain edema associated with cerebral venous sinus thrombosis. Stroke. 2009. PMID: 19892996. [PMC free article: PMC2799535] [PubMed: 19892996]
282.
Eppinger MJ, Jones ML, Deeb GM, Bolling SF, Ward PA. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res. 1995; 58: 713–18. [PubMed: 7791351] [Cross Ref]
283.
Carden DL, Smith JK, Korthuis RJ. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle. Role of granulocyte adherence. Circ Res. 1990; 66: 1436–44. [PubMed: 2159391]
284.
Levine AJ, Parkes K, Rooney SJ, Bonser RS. The effect of adhesion molecule blockade on pulmonary reperfusion injury. Ann Thorac Surg. 2002; 73: 1101–06. [PubMed: 11996249] [Cross Ref]
285.
Kluger MS. Vascular endothelial cell adhesion and signaling during leukocyte recruitment. Adv Dermatol. 2004; 20: 163–201. [PubMed: 15544200]
286.
Ionescu CV, Cepinskas G, Savickiene J, Sandig M, Kvietys PR. Neutrophils induce sequential focal changes in endothelial adherens junction components: role of elastase. Microcirculation. 2003; 10: 205–20. [PubMed: 12700588]
287.
Shigematsu T, Wolf RE, Granger DN. T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. Microcirculation. 2002; 9: 99–109. [PubMed: 11932777]
288.
Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2009; 137: 695–702. [PMC free article: PMC2670927] [PubMed: 19258091] [Cross Ref]
289.
Liu M, Chien CC, Grigoryev DN, Gandolfo MT, Colvin RB, Rabb H. Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice. Microvasc Res. 2009; 77: 340–47. [PubMed: 19323971] [Cross Ref]
290.
Reynolds JM, McDonagh PF. Platelets do not modulate leukocyte-mediated coronary microvascular damage during early reperfusion. Am J Physiol. 1994; 266: H171–81. [PubMed: 8304497]
291.
Heindl B, Zahler S, Welsch U, Becker BF. Disparate effects of adhesion and degranulation of platelets on myocardial and coronary function in postischaemic hearts. Cardiovasc Res. 1998; 38: 383–94. [PubMed: 9709399] [Cross Ref]
292.
Zamora CA, Baron D, Heffner JE. Washed human platelets prevent ischemia-reperfusion edema in isolated rabbit lungs. J Appl Physiol. 1991; 70: 1075–84. [PubMed: 2032973]
293.
Alexander JS, Patton WF, Christman BW, Haselton FR. Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro. Am J Physiol. 1998; 272: H115–22. [PubMed: 9458859]
294.
Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JG. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol. 2003; L258–67. [PubMed: 12626332]
295.
Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab. 2006; 26: 605–12. [PubMed: 16163296] [Cross Ref]
296.
Lee KS, Kim SR, Min KH, Lee KY, Choe YH, Park SY, Chai OH, Zhang X, Song SH, Lee LC. Mast cells can mediate vascular permeability through regulation of the PI3K-HIF-1alpha-VEGF axis. Am J Respir Crit Care Med. 2008; 178: 787–97. [PubMed: 18669818]
297.
Iuvone T, Den Bossche RV, D’Acquisto F, Carnuccio R, Herman AG. Evidence that mast cell degranulation, histamine and tumor necrosis factor release occur in LPS-induced plasma leakage in rat skin. Br J Pharmacol. 1999; 128: 700–04. [PMC free article: PMC1571670] [PubMed: 10516651]
298.
Miller HR, Pemberton AD. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002; 105: 375–90. [PMC free article: PMC1782685] [PubMed: 11985658]
299.
Naidu BV, Krishnadasan B, Farivar AS, Woolley SM, Thomas R, Van Rooijen N, et al. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003; 126: 200–07. [PubMed: 12878956] [Cross Ref]
300.
Chen Y, Lui VC, Rooijen NV, Tam PK. Depletion of intestinal resident macrophages prevents ischaemia reperfusion injury in gut. Gut. 2004; 53: 1772–80. [PMC free article: PMC1774329] [PubMed: 15542513] [Cross Ref]
301.
Zhao M, Fernandez LG, Doctor A, Sharma AK, Zarbock A, Tribble CG, et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2006; 291: L1018–26. [PubMed: 16861385] [Cross Ref]
302.
Kubota Y, Iwasaki Y, Harada H, Yokomura I, Ueda M, Hashimoto S, Nakagawa M. Depletion of alveolar macrophages by treatment with 2-chloroadenosine aerosol. Clin Diagn Lab Immunol. 1999; 6: 452–56. [PMC free article: PMC95707] [PubMed: 10391842]
303.
Gray M, Palispis W, Popovich PG, van Rooijen N, Gupta R. Macrophage depletion alters the blood-nerve barrier without affecting Schwann cell function after neural injury. J Neurosci Res. 2007; 85: 766–77. [PubMed: 17266098] [Cross Ref]
304.
Inauen W, Payne DK, Kvietys PR, Granger DN. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals. Free Radic Biol Med. 1990; 9: 219–23. [PubMed: 2272529] [Cross Ref]
305.
Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981; 81: 22–29. [PubMed: 6263743]
306.
Yang Z, Sharma AK, Marshall M, Kron IL, Laubach VE. NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury. Am J Respir Cell Mol Biol. 2009; 40: 375–81. [PMC free article: PMC2645535] [PubMed: 18787174]
307.
Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007; 38: 3000–06. [PubMed: 17916764] [Cross Ref]
308.
Gertzberg N, Neumann P, Rizzo V, Johnson A. NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol. 2004; L37–48. [PubMed: 12807699]
309.
Warboys CM, Toh HB, Fraser PA. Role of NADPH oxidase in retinal microvascular permeability increase by RAGE activation. Invest Ophthalmol Vis Sci. 2009; 50: 1319–28. [PubMed: 18997095]
310.
Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994; 74: 376–82. [PubMed: 8118946]
311.
Ozaki M, Kawashima S, Hirase T, Yamashita T, Namiki M, Inoue N, et al. Overexpression of endothelial nitric oxide synthase in endothelial cells is protective against ischemia-reperfusion injury in mouse skeletal muscle. Am J Pathol. 2002; 160: 1335–44. [PMC free article: PMC1867198] [PubMed: 11943718]
312.
Kurose I, Kubes P, Wolf R, Anderson DC, Paulson J, Miyasaka M, et al. Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ Res. 1993; 73: 164–71. [PubMed: 7685251]
313.
Rumbaut RE, Wang J, Huxley VH. Differential effects of L-NAME on rat venular hydraulic conductivity. Am J Physiol Heart Circ Physiol. 2000; 279: H2017–23. [PubMed: 11009493]
314.
Hiratsuka M, Katayama T, Uematsu K, Kiyomura M, Ito M. In vivo visualization of nitric oxide and interactions among platelets, leukocytes, and endothelium following hemorrhagic shock and reperfusion. Inflamm Res. 2009; 58: 463–71. [PubMed: 19262990] [Cross Ref]
315.
Vachharajani V, Granger DN. Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life. 2009; 61: 424–30. [PMC free article: PMC2695566] [PubMed: 19319966] [Cross Ref]
316.
Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovasc Res. 2010 Apr 13. [Epub ahead of print] [PMC free article: PMC2895540] [PubMed: 20299333] [Cross Ref]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53378
PubReader format: click here to try

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to pubmed