Jones EG. On the mode of entry of blood vessels into the cerebral cortex. J Anat. 1970; 106: pp. 507–520. [PMC free article: PMC1233426] [PubMed: 5423942]
Rennels M, Nelson E. Capillary innervation in the mammalian central nervous system: an electron microscope demonstration (1). Am J Anat. 1975; 144: pp. 233–241. [PubMed: 1180237]
Cohen Z, Bonvento G, Lacombe P, Hamel E. Serotonin in the regulation of brain crocirculation. Prog Neurobiol. 1996; 50: pp. 335–362. [PubMed: 9004349] [Cross Ref]
Cipolla MJ, Li Rui, Vitullo L. Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharm. 2004; 44(1): pp. 1–8. [PubMed: 15175551] [Cross Ref]
Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D. Penetrating arterioles are the bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA. 2007; 104: pp. 365–370. [PMC free article: PMC1765467] [PubMed: 17190804] [Cross Ref]
Roggendorf W, Cervos-Navarro J. Ultrastructure of arterioles in the cat brain. Cell Tissue Res. 1977; 178: pp. 495–515. [PubMed: 870204] [Cross Ref]
Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000; 2: pp. 131–147. [PubMed: 10696506]
Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004; 46: pp. 243–260. [PubMed: 15571768]
Kiliç T, Akakin A. Anatomy of cerebral veins and sinuses. Frontiers Neurol Neurosci. 2008; 23: pp. 4–15. [PubMed: 18004050]
Lee RM. Morphology of cerebral arteries. Pharmacol Ther. 1995;66: pp. 149–173. [PubMed: 7630927] [Cross Ref]
Begley DJ, and Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61: pp. 39–78. [PubMed: 14674608]
Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008; 57: pp. 178–201. [PubMed: 18215617] [Cross Ref]
Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005; 28: pp. 202–208. [PubMed: 15808355] [Cross Ref]
Wei L, Otsuka T, Acuff V, Bereczki D, Pettigrew K, Patlak C, Fenstermacher J. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab. 1993; 13: pp. 487–497. [PubMed: 8478407]
Klein B, Kuschinsky W, Schrock H, Vetterlein F. Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol. 1986; 251: pp. H1333–H1340. [PubMed: 3098116]
Xu K, Lamanna JC. Chronic hypoxia and the cerebral circulation. J Appl Physiol. 2006 100: pp. 725–730. [PubMed: 16421279] [Cross Ref]
Boero JA, Ascher J, Arregui A, Rovainen C, Woolsey TA. Increased brain capillaries in chronic hypoxia. J Appl Physiol. 1999; 86: pp. 1211–1219. [PubMed: 10194205]
Dunn JF, Roche MA, Springett R, Abajian M, Merlis J, Daghlian CP, Lu SY, and Makki M. Monitoring angiogenesis in brain using steadystate quantification of DeltaR2 with MION infusion. Magn Reson Med. 2004; 51: pp. 55–61. [PubMed: 14705045]
Dunn JF, Grinberg O, Roche M, Nwaigwe CI, Hou HG, and Swartz HM. Noninvasive assessment of cerebral oxygenation during acclimation to hypobaric hypoxia. J Cereb Blood Flow Metab. 2000; 20: pp. 1632–1635. [PubMed: 11129779] [Cross Ref]
Sokolova IA, Manukhina EB, Blinkov SM, Koshelev VB, Pinelis VG, Rodionov IM. Rare-faction of the arterioles and capillary network in the brain of rats with different forms of hypertension. Microvasc Res. 1985; 30: pp. 1–9. [PubMed: 4021832]
Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004; 16: pp. 1–13. [PubMed: 15207256]
Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol. 2006; 100: pp. 1059–1064. [PubMed: 16467392]
Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH. Cell–cell signaling in the neurovascular unit. Neurochem Res. 2007; 32: pp. 2032–2045. [PubMed: 17457674] [Cross Ref]
Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008; 14: pp. 1581–1593. [PubMed: 18673199] [Cross Ref]
Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001; 169: pp. 1–11. [PubMed: 11340256] [Cross Ref]
Dore-Duffy P, La Manna JC. Physiologic angiodynamics in the brain. Antioxid Redox Signal. 2007; 9: pp. 1363–1372. [PubMed: 17627476] [Cross Ref]
Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006; 26: pp. 1057–1083. [PubMed: 16710759] [Cross Ref]
Liebeskind DS. Collateral circulation. Stroke. 2003;34:pp. 2279–2284. [PubMed: 12881609] [Cross Ref]
Handa Y, Caner H, Hayashi M, Tamamaki N, Nojyo Y. The distribution pattern of the sympathetic nerve fibers to the cerebral arterial system in rat as revealed by antegrade labeling with WGA-HRP. Exp Brain Res. 1990; 82: pp. 493–498. [PubMed: 1705515]
Cohen Z, Bovento G, Lacombe P, Seylaz J, MacKenzie ET, Hamel E. Cerebrovascular nerve fibers immunoreactive for tryptophan-5-hydroxylase in the rat: distribution, putative origin and comparison with sympathetic noradrenergic nerves. Brain Res. 1992; 598: pp. 203–214. [PubMed: 1486481]
Chédotal A, Hamel E. Serotonin-synthesizing nerve fibers in rat and cat cerebral arteries and arterioles: immunohistochemistry of tryptophan-5-hydroxylase. Neurosci Lett. 1990; 116: pp. 269–274. [PubMed: 2243604]
Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab. 1997; 17: pp. 894–904. [PubMed: 9290587] [Cross Ref]
Bleys RLAW, Cowen T. Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech. 2001; 53: pp. 106–188. [PubMed: 11301486]
Estrada C, Mengual E, González C. Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracerebral blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow. J Cereb Blood Flow Metab. 1993; 13:pp. 978–984. [PubMed: 8408322]
Allaman I, Pellerin L, Magistretti PJ. Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia. 2000; 30: pp. 382–391. [PubMed: 10797618] [Cross Ref]
Kotter K, Klein J. Adrenergic modulation of astroglial phospholipase D activity and cell proliferation. Brain Res. 1999; 29: pp. 138–145. [PubMed: 10350567] [Cross Ref]
Cohen Z, Bouchelet I, Olivier A, Villemure JG, Ball R, Stanimirovic DB, Hamel E. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J Cereb Blood Flow Metab. 1999; 19: pp. 908–917. [PubMed: 10458598] [Cross Ref]
Xu T, Pandey SC. Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Res Bull. 2000; 51: pp. 499–505. [PubMed: 10758340]
Sandén N, Thorlin T, Blomstrand F, Persson PA, Hansson E. 5-Hydroxytryptamine2b receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int. 2000; 36: pp. 427–434. [PubMed: 10733010] [Cross Ref]
Sándor P. Nervous control of the cerebrovascular system: doubts and facts. Neurochem Int. 1999; 35: pp. 237–259. [PubMed: 10458655] [Cross Ref]
Lincoln J. Innervation of cerebral arteries by nerves containing 5-hydroxytryptamine and noradrenaline. Pharmacol Ther. 1995;68: pp. 473–501. [PubMed: 8788567] [Cross Ref]
Högestatt ED, Andersson KE. On the postjunctional α-adrenoreceptors in rat cerebral and mesenteric arteries. J Anat Pharmacol. 1984; 4: pp. 161–175. [PubMed: 6149225]
Alberts B, Johnson A, Lewis J, et al. Signaling through G-protein-linked cell-surface receptors. In: Molecular Biology of the Cell, Alberts B, Johnson A, Lewis J, et al. (Eds.). New York: Garland Science, 2002; pp. 852–862.
Dacey RG, Duling BR. Effect of norepinephrine on penetrating arterioles of rat cerebralcortex. Am J Physiol. 1984; 246: pp. H380–H385. [PubMed: 6703074]
Rosendorff C, Mitchell G, Mitchell D. Adrenergic innervation affecting local cerebral blood flow. In: Neurogenic Control of Brain Circulation: Werner-Gren Center International Symposium Series, Vol. 30, Owman Ch, Edvinsson L (Eds.), Oxford: Pergamon, 1977; pp. 455–464.
Sercombe R, Hardebo JE, Kåhrström J, Seylaz J. Amine-induced responses of pial and penetrating cerebral arteries: evidence for heterogeneous responses. J Cereb Blood Flow Metab. 1990; 10: pp. 808–818. [PubMed: 1976641]
Mayhan WG. Responses of cerebral arterioles to activation of β-adrenergic receptors during diabetes mellitus. Stroke. 1994; 25: pp. 141–146. [PubMed: 8266362]
Harper AM, MacKenzie ET. Effects of 5-hydroxytryptamine on pial arteriolar calibre in anaesthetized cat. J Physiol. 1977; 271: pp. 735–746. [PMC free article: PMC1353630] [PubMed: 926021]
Mayhan WG, Faraci FM, and Heistad DD. Responses of cerebral arterioles to adenosine, 5′-diphosphate, serotonin, and the thromboxane analog U-46619 during chronic hypertension. Hypertension. 1988; 12: pp. 556–561. [PubMed: 3203960]
Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L. Contractile 5-HT1B receptors in human cerebral arteries: pharmacologic characterization and localization with immunocytochemistry. Br J Pharmacol. 1999; 128: pp. 1133–1140. [PMC free article: PMC1571736] [PubMed: 10578124] [Cross Ref]
Willis T. Cerebi Anatome, cui accessit nervorum, descriptio et usus. Flesher J. 1664.
Bleys RLAW, Cowen T. Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech. 2001; 53: pp. 106–188. [PubMed: 11301486]
Kobayashi S, Tsukahara S, Sugita K, et al. Adrenergic and cholinergic innervations of rat cerebral arteries. Consecutive demonstration on whole mount preparations. Histochemistry. 1981; 70: pp. 129–138. [PubMed: 7216830]
Handa Y, Caner H, Hayashi M, et al. The distribution pattern of the sympathetic nerve fibers to the cerebral arterial system in rat as revealed by antegrade labeling with WGA-HRP. Exp Brain Res. 1990; 82: pp. 493–498. [PubMed: 1705515]
Hamel E, Edvinsson L, McKenzie ET. Heterogeneous vasomotor responses of anatomically distinct feline cerebral arteries. Br J Pharmacol. 1988; 94: pp. 423–436. [PMC free article: PMC1853985] [PubMed: 3395784]
Edvinsson L, Egund N, Owman C, Sahlin C, Svendgaard NA. Reduced noradrenaline uptake and retention in cerebrovascular nerves associated with angiographically visible vasoconstriction following experimental subarachnoid hemorrhage. Brain Res Bull. 1982; 9: pp. 799–805. [PubMed: 7172049] [Cross Ref]
Wahl M. Local chemical, neural, and humoral regulation of cerebrovascular resistance vessels. J Cardiovasc Pharm. 1985; 7(Suppl 3): pp. S36–S46. [PubMed: 2409398] [Cross Ref]
Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990; 66: pp. 8–17. [PubMed: 2403863]
Tuor UI. Acute hypertension and sympathetic stimulation: local heterogeneous changes in cerebral blood flow. Am J Physiol. 1992; 263(2 Pt 2): pp. H511–H518. [PubMed: 1510148]
Goadsby PJ, Edvinsson L. Neurovascular control of the cerebral circulation. In: Cerebral Blood Flow and Metabolism, 2nd ed., Edvinsson L, Krause DN (Eds.). Philadelphia, PA: Lippincott Williams & Wilkins, 2002, pp. 172–188.
Suzuki N, Hardebo JE. The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev. 1993; 5: pp. 33–46. [PubMed: 8452761]
Talman WT, Nitschke Dragon D. Neuronal nitric oxide mediates cerebral vasodilatation during acute hypertension. Brain Res. 2007; 1139: pp. 126–132. [PMC free article: PMC1885240] [PubMed: 17291465] [Cross Ref]
Asahi M, Huang Z, Thomas S, Yoshimura S, Sumii T, Mori T, Qiu J, Amin-Hanjani S, Huang PL, Liao JK, Lo EH, Moskowitz MA. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab. 2005; 25: pp. 722–729. [PMC free article: PMC2742229] [PubMed: 15716855] [Cross Ref]
Waeber C, Moskowitz MA. Migraine as an inflammatory disorder. Neurology. 2005; 64: pp. S9–S15. [PubMed: 15911785]
Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, and Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002; 8: pp. 136–142. [PubMed: 11821897] [Cross Ref]
Edvinsson L, Uddman R, Juul R. Peptidergic innervation of the cerebral circulation. Role in subarachnoid hemorrhage in man. Neurosurg Rev. 1990; 13: pp. 265–272. [PubMed: 2126362] [Cross Ref]
Bayliss N. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902; 28: pp. 220–231. [PMC free article: PMC1540533] [PubMed: 16992618]
Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr. Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol. 1978; 234: pp. H582–H591. [PubMed: 645924]
Mellander S. Functional aspects of myogenic vascular control. J Hypertens. 1989; 7:(Suppl 4): pp. S21–S30. [PubMed: 2553897]
Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharamacol. 1984; 101: pp. 161–211. [PubMed: 6441228] [Cross Ref]
Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002; 283: pp. H2260–2267. [PubMed: 12388265]
Cipolla MJ, Osol G. Vascular smooth muscle actin cytoskeleton in cerebral artery forced dilatation. Stroke. 1998; 29: pp. 1223–1228. [PubMed: 9626298]
Paternò R, Heistad DD, Faraci FM. Potassium channels modulate cerebral autoregulation during acute hypertension. Am J Physiol Heart Circ Physiol. 2000; 278: pp. H2003–2007. [PubMed: 10843899]
Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008; 77: pp. 8–18. [PubMed: 17764667]
Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol. 1998; 508: pp. 199–210. [PMC free article: PMC2230857] [PubMed: 9490839]
Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW et al. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J. 2003; 22: pp. 6027–6034. [PMC free article: PMC275441] [PubMed: 14609949] [Cross Ref]
Johnson PC. The myogenic response in the microcirculation and its interaction with other control systems. J Hypertens. 1989; 7(Suppl 4): pp. S33–S39. [PubMed: 2681595]
Hui Z, Ratz PH, Hill MA. Role of myosin phosphorylation and Ca in myogenic reactivity and arteriolar tone. Am J Physiol. 1995; 269: pp. H1590–H1596. [PubMed: 7503253]
Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res. 2002; 90: pp. 248–250. [PubMed: 11861411] [Cross Ref]
Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res. 2004; 95: pp. 922–929. [PubMed: 15472118] [Cross Ref]
Dopico AM, Kirber MT, Singer JJ, Walsh JV. Membrane stretch directly activates large conductance Ca-activated calcium channels in mesenteric artery smooth muscle cells. Am J Hypertens. 1994; 7: pp. 82–89. [PubMed: 8136116]
Nelson MT, Conway MA, Knot HJ, Brayden JE. Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol. 1997; 502: pp. 259–264. [PMC free article: PMC1159547] [PubMed: 9263908] [Cross Ref]
D’Angelo G, Mogford JE, Davis GE, Davis MJ, Meininger GA. Integrin-mediated reduction in vascular smooth muscle Ca induced by RDG-containing peptide. Am J Physiol. 1997; 272: pp. H2065–H2070. [PubMed: 9139994]
Cipolla MJ, Gokina NI, Osol G. Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. FASEB J. 2002; 16: pp. 72–76. [PubMed: 11772938] [Cross Ref]
Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009; 10: pp. 21–33. [PubMed: 19197329] [Cross Ref]
Clark K, Middelbeek J, van Leeuwen FN. Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol. 2008; 87: pp. 631–640. [PubMed: 18342984] [Cross Ref]
Coulson RJ, Cipolla MJ, Vitullo L, Chesler NC. Mechanical properties of rat middle cerebral arteries with and without myogenic tone. J Biomed Eng. 2004; 126: pp. 76–81. [PubMed: 15171132] [Cross Ref]
Schubert R, Kalentchuk VU, Krien U. Rho kinase inhibition partly weakens myogenic reactivity in rat small arteries by changing calcium sensitivity. Am J Physiol Heart Circ Physiol. 2002; 283: pp. H2288–H2295. [PubMed: 12388214]
Lagaud G, Gaudreault N, Moore ED, van Breemen C, Laher I. Pressure dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002; 283: pp. H2187–H2195. [PubMed: 12388215]
Osol G, Laher I, Cipolla MJ. Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation. Circ Res. 1991; 68: pp. 359–367. [PubMed: 1991343]
Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000; 278: pp. C235–C256. [PubMed: 10666018]
Jaggar JH. Intravascular pressure regulates local and global Ca(2+) signaling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol. 2001; 281: pp. C439–C448. [PubMed: 11443043]
Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992; 256: pp. 532–535. [PubMed: 1373909] [Cross Ref]
Iadecola C, Yang G, Ebner TJ, Chen G. Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol. 1997; 78: pp. 651–659. [PubMed: 9307102]
Cipolla MJ, McCall A, Lessov N, and Porter J. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997; 28: pp. 176–180. [PubMed: 8996508]
Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999; 22: pp. 391–397. [PubMed: 10441299] [Cross Ref]
Shima K. Hydrostatic brain edema: basic mechanisms and clinical aspect. Acta Neurochir. 2003; 86(Suppl): pp. 17–20. [PubMed: 14753396]
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004; 5: pp. 347–360. [PubMed: 15100718] [Cross Ref]
Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005; 57: pp. 173–185. [PubMed: 15914466] [Cross Ref]
Oby E, Janigro D. The blood–brain barrier and epilepsy. Epilepsia. 2006; 47: pp. 1761–1774. [PubMed: 17116015] [Cross Ref]
Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998; 78: pp. 53–97. [PubMed: 9457169]
Faraci FM, Brian JE. Nitric oxide and the cerebral circulation. Stroke. 1994; 25: pp. 692–703. [PubMed: 7510430]
Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev. 1992; 43: pp. 109–142. [PubMed: 1852778]
Szabo C. Physiologic and pathological roles of nitric oxide in the central nervous system. Brain Res Bull. 1991; 41: pp. 131–141. [PubMed: 8886382]
Cipolla MJ, Smith J, Kohlmeyer MM, Godfrey JA. SKCa and IKCa Channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009; 40: pp. 1451–1457. [PMC free article: PMC2755234] [PubMed: 19246694] [Cross Ref]
Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke. 1997; 28: pp. 837–842. [PubMed: 9099205]
Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle. Am J Physiol. 1993; 265: pp. C299–C303. [PubMed: 8338137]
Tayeh MA, Marletta MA. Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required cofactor. J Biol Chem. 1989; 264: pp. 19654–19658. [PubMed: 2584186]
Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998; 273: pp. 25804–25808. [PubMed: 9748253] [Cross Ref]
Katusic Z. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol. 2001; 281: pp. H981–H986. [PubMed: 11514262]
Fukai T. Endothelial GTPCH in eNOS uncoupling and atherosclerosis. Arterioscler Thromb Vasc Biol. 2007; 27: pp. 1493–1495. [PubMed: 17581829] [Cross Ref]
Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003; 111: pp. 1201–1209. [PMC free article: PMC152929] [PubMed: 12697739] [Cross Ref]
Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol. 2003; 140: pp. 701–706. [PMC free article: PMC1574066] [PubMed: 14534153] [Cross Ref]
Bauer PM, Fulton D, Boo YC, Sorescu GP, Kemp BE, Jo H, Sessa WC. Compensatory phosphorylation and protein–protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J Biol Chem. 2003; 278: pp. 14841–14849. [PubMed: 12591925] [Cross Ref]
Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res. 2007; 75: pp. 247–260. [PMC free article: PMC2682334] [PubMed: 17466957] [Cross Ref]
Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance Kca channels in cerebral EDHF-mediated dilations. Am J Physiol. 2003; 285: pp. H1590–H1599. [PubMed: 12805022]
McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke. 2006; 37: pp. 1277–1282. [PubMed: 16556879] [Cross Ref]
Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci.2003; 23: pp. 374–380. [PubMed: 12377579]
Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol. 2004; 141: pp. 881–903. [PMC free article: PMC1574270] [PubMed: 15028638] [Cross Ref]
Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-dependent hyperpolarizing factor in rat arteries. Nature. 2998; 396: pp. 269–272. [PubMed: 9834033]
Miura H, Guttermann DD. Human coronary arteriolar dilation to arachidonic acid dependents on cytochrome P450 monooxygenase and Ca2+-activated K+-channels. Circ Res. 1998; 83(5): pp. 501–507. [PubMed: 9734472]
Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol. 2002; 283: pp. H406–H411. [PubMed: 12063315]
Si H, Heyken W-T, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Gieging G, Maier T, Gross V, Bader M, DeWit C, Hoyer J, Kohler R. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res. 2006; 99: pp. 537–544. [PubMed: 16873714]
Kohler R, Degenhardt C, Kuhn M, Funkel N, Paul M, Hoyer J. Expression and function of endothelial ca(2+)-activated K(+) channels in human mesenteric artery: single-cell reverse transcriptase–polymerase chain reaction and electrophysiological study in situ. Cir Res.2000; 87: pp. 496–503. [PubMed: 10988242]
Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F. What’s where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol. 2009; 36: pp. 67–76. [PubMed: 19018806] [Cross Ref]
Sandow SL. Factors, fiction and endothelium-derived hyperpolarizing factor. Clin Exp Pharmacol Physiol. 2004; 31: pp. 563–570. [PubMed: 15479161]
Andresen J, Shafi NI, Bryan RM Jr. Endothelial influences on cerebrovascular tone. J Appl Physiol. 2006; 100: pp. 318–327. [PubMed: 16357085]
Bogatcheva NV, Sergeeva MG, Dudek SM, and Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res. 2005; 69: pp. 107–127. [PubMed: 15896353] [Cross Ref]
Smith WL, Garavito RM, and DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996; 271: pp. 33157–33160. [PubMed: 8969167]
DeWitt DS, Kong DL, Lyeth BG, Jenkins LW, Hayes RL, Wooten ED, and Prough DS. Experimental traumatic brain injury elevates brain prostaglandin E2 and thromboxane B2 levels in rats. J Neurotrauma. 1988; 5: pp. 303–313. [PubMed: 3249309] [Cross Ref]
Cole DJ, Patel PM, Schell RM, Drummond JC, and Osborne TN. Brain eicosanoid levels during temporary focal cerebral ischemia in rats: a microdialysis study. J Neurosurg Anesthesiol. 1993; 5: 41–47. [PubMed: 8431669]
You JM, Golding EM, and Bryan RM. Arachidonic acid metabolites, hydrogen peroxide, and EDHF in cerebral arteries. Am J Physiol Heart Circ Physiol. 2005; 289: pp. H1077–H1083. [PubMed: 15863454] [Cross Ref]
Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Basic Neurochemistry, Siegel G, Agrano BV, Albers RW, Molino PV (Eds.). New York: Raven Press, 1989: pp. 565–590.
Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 2007; 102: pp. 141–152. [PubMed: 17010421]
Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology. 2008; 55: pp. 281–288. [PMC free article: PMC2896303] [PubMed: 18541276] [Cross Ref]
Ku DN, Zhu C. In: Hemodynamic Forces and Vascular Cell Biology, Sumpio BE (Ed.), Austin, TX: CRC Press, RG Landes Co., 1993: p. 3.
Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990; 2: pp. 161–192. [PubMed: 2201348]
Phillips SJ, Whisnant JP. Hypertension and the brain. Arch Intern Med. 1992; 152: pp. 938–945. [PubMed: 1580719] [Cross Ref]
Heistad DD, Kontos HA. In: Handbook of Physiology: The Cardiovascular System III, Berne RM, Sperelakis N (Eds.). Bethesda, MD: American Physiological Society, 1979: pp. 137–182.
Hossmann K-A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994; 36: pp. 557–565. [PubMed: 7944288] [Cross Ref]
Iadecola C. Cerebral circulatory dysregulation in ischemia. In Cerebrovascular Diseases, Ginsberg MD, Bogousslavsky J. (Eds.). Cambridge, MA: Blackwell Science, 1998: pp. 319–332.
Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990; 2: pp. 161–192. [PubMed: 2201348]
Euser AG, Cipolla MJ. Cerebral blood flow autoregulation and edema formation during pregnancy in anesthetized rats. Hypertension. 2007; 49: pp. 334–340. [PubMed: 17200432]
Lassen NA, Agnoli A. Upper limit of autoregulation of cerebral blood flow: on the pathogenesis of hypertensive encephalopathy. Scand J Clin Lab Invest. 1972; 30: pp. 113–115. [PubMed: 4640619]
Johansson B, Li C-L, Olsson Y, Klatzo I. Effect of acute arterial hypertension on the blood–brain barrier to protein tracers. Acta Neuropathol. 1970; 16: pp. 117–124. [PubMed: 4097399] [Cross Ref]
Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL, Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978; 234: pp. H371–H383. [PubMed: 645875]
Cipolla MJ. Brief review: Cerebrovascular function during pregnancy and eclampsia. Hypertension. 2007; 50(1): pp. 14–24. [PubMed: 17548723]
Phillips SJ, Whisnant JP. Hypertension and the brain. Arch Intern Med. 1992; 152: pp. 938–945. [PubMed: 1580719] [Cross Ref]
Strandgaard S, Paulson OB. Hypertensive disease and the cerebral circulation. In: Hypertension: Pathophysiology, Diagnosis, and Management, Laragh JH, Brenner BM (Eds.). New York: Raven Press, 1990: pp. 399–416.
Strandgaard S, MacKenzie ET, Sengupta D, Rowan JP, Lassen NA, Harper AM. Upper limit of autoregulation of cerebral blood flow in the baboon. Circ Res. 1974; 34: pp. 434–440. [PubMed: 4363762]
Byrom FB. The pathogenesis of hypertensive encephalopathy and its relation to the malignant phase of hypertension. Lancet. 1954; 2: pp. 201–211. [PubMed: 13184644] [Cross Ref]
Meyer JS, Waltz AG, Gotoh F. Pathogenesis of cerebral vasospasm in hypertensive encephalopathy: II. Nature of increased irritability of smooth muscle of pial arterioles in renal hypertension. Neurology. 1960; 10: pp. 859–867.
Byrom FB. The Hypertensive Vascular Crisis: An Experimental Study. London, Heinemann, 1969.
Giese J. Acute hypertensive vascular disease. II. Studies on vascular reaction patterns and permeability changes by means of vital microscopy and colloidal tracer technique. Acta Pathol Microbiol Scand. 1964; 62: pp. 497–515. [PubMed: 14238488]
Skinhøj E, Strandgaard S. Pathogenesis of hypertensive encephalopathy. Lancet. 1973; 1: pp. 461–462. [PubMed: 4120370] [Cross Ref]
Tamaki K, Sadoshima S, Baumbach GL, Iadecola C, Reis DJ, Heistad DD. Evidence that disruption of the blood–brain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy. Hypertension. 1984; 6(Suppl I): pp. I75–I81. [PubMed: 6724673]
Johnson, PC. The myogenic response. In: Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle, Section 2, Vol. II. Bethesda, MD: American Physiological Society, 1981: pp. 409–442.
Heistad DD, Marcus ML, Abboud FM. Role of large arteries in regulation of cerebral blood flow in dogs. J Clin Invest. 1978; 62: pp. 761–768. [PMC free article: PMC371827] [PubMed: 701475] [Cross Ref]
Murphy S, Rich G, Orgren KI, Moore SA, Faraci FM. Astrocyte-derived lipoxygenase product evokes endothelium-dependent relaxation of the basilar artery. J Neurosci Res. 1994; 38: pp. 314–318. [PubMed: 7523688] [Cross Ref]
Filosa JA, Bonev AD, and Nelson MT. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res. 2004; 95: pp. e73–e81. [PubMed: 15499024] [Cross Ref]
Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004; 431: pp. 195–199. [PubMed: 15356633] [Cross Ref]
Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, and Carmignoto G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003; 6: pp. 43–50. [PubMed: 12469126] [Cross Ref]
Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009; 131: pp. 74–82. [PubMed: 19640134] [Cross Ref]
Steiner LA AJ, Gupta AK, Menon DK. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth. 2003; 90: pp. 774–786. [PubMed: 12765894]
Taguchi H, Heistad DD, Kitazono T, Faraci FM. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia. Circ Res. 1994; 74: pp. 1005–1008. [PubMed: 8156623]
Golanov EV, Reis DJ. Oxygen and cerebral blood flow. In: Primer on Cerebrovascular Diseases, Welch KMA, Caplan LR, Reis DJ, Siesjo BK, Weir B (Eds.). San Diego, CA: Academic Press, 1997. [Cross Ref]
Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol. 1964; 206: pp. 25–35. [PubMed: 14117646]
Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948; 27: pp. 484–492. [PMC free article: PMC439519] [PubMed: 16695569]
Kontos HA, Raper AJ, Patterson JL. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke. 1977; 8: pp. 358–360. [PubMed: 16363]
Kontos HA, Wei EP, Raper AJ, Patterson JL Jr. Local mechanism of CO2 action of cat pial arterioles. Stroke. 1977; 8: pp. 226–229. [PubMed: 15334]
Iadecola C. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci USA. 1992; 89: pp. 3913–3916. [PMC free article: PMC525601] [PubMed: 1570313] [Cross Ref]
Pickard JD, Mackenzie ET. Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation to carbon dioxide. Nat New Biol. 1973; 245: pp. 187–188. [PubMed: 4200498]
Ehrlich P. Das Sauerstoff-Bedürfnis des Organismus. Eine farbenanalytische Studie. PhD thesis. Berlin: Herschwald, 1885.
Goldmann E. Vitalfärbung am Zentralnervensystem. Beitrag zur Physio-Pathologie des Plexus chorioideus und der Hirnhäute. Berlin: Abh Königl Preuss Akad Wiss, 1913; 1: pp. 1–61.
Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep. 2008; 41: pp. 345–352. [PubMed: 18510863]
Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. 2008; 31: pp. 279–286. [PubMed: 18471905] [Cross Ref]
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009; 335: pp. 75–96. [PubMed: 18633647] [Cross Ref]
Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience. 2004; 129(4): pp. 851–860. [PubMed: 15561403] [Cross Ref]
Skipor J, Thiery JC. The choroid plexus–cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp (Wars). 2008; 68(3): pp. 414–428. [PubMed: 18668165]
Czosnyka M, Czosnyka Z, Momjian S, Pickard JD. Cerebrospinal fluid dynamics. Physiol Meas. 2004; 25: pp. R51–R76. [PubMed: 15535175]
Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neuroscience. 2000; 95: pp. 577–592. [PubMed: 10658638]
Betz AL, Goldstein GW, Katzman R. Blood–brain–cerebrospinal fluid barriers. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Seigel GJ (Ed.). New York: Raven Press, 1994: pp. 681–702.
Faraci FM, Mayhan WG, Williams JK, Heistad DD. Effects of vasoactive stimuli on blood flow to choroid plexus. Am J Physiol. 1988; 254(2 Pt 2): pp. H286–H291. [PubMed: 3344819]
Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Hering M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 1992; 262: pp. R20–R24. [PubMed: 1733335]
Reese TS, Karnovsky MJ. Fine structural localization of a blood brain barrier to exogenous peroxidase. J Cell Biol. 1967; 34: pp. 207–217. [PMC free article: PMC2107213] [PubMed: 6033532] [Cross Ref]
Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969; 40: pp. 648–677. [PMC free article: PMC2107650] [PubMed: 5765759] [Cross Ref]
Deane R, Zlokovic BV. Role of blood brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2007; 4: pp. 191–197. [PubMed: 17430246] [Cross Ref]
Ueno M. Molecular anatomy of the brain endothelial barrier: an overview of the distributional features. Curr Med Chem. 2007; 14: pp. 1199–1206. [PubMed: 17504140]
Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev. 2007; 56: pp. 119–147. [PubMed: 17659349] [Cross Ref]
Brightman MW, Tao-Cheng JH. In: The Blood–Brain Barrier, Pardridge WM (Ed.). New York: Raven Press, 1993: pp. 107–125.
Kniesel U, Wolburg H. Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000; 20: pp. 57–76. [PubMed: 10690502]
Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA. 1991; 179: pp. 3460–3464. [PMC free article: PMC51467] [PubMed: 2014265]
Haskins J, Gu L, Wiichen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998; 141: pp. 199–208. [PMC free article: PMC2132714] [PubMed: 9531559] [Cross Ref]
Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999; 147: pp. 891–903. [PMC free article: PMC2156154] [PubMed: 10562289] [Cross Ref]
Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol. 1999; 145: pp. 579– 588. [PMC free article: PMC2185072] [PubMed: 10225958] [Cross Ref]
Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature. 1988; 333: pp. 272–276. [PubMed: 3285223] [Cross Ref]
Stevenson BR, Heintzelman MB, Anderson JM, Citi S, Mooseker MS. ZO-1 and cingulin: tight junction proteins with distinct identities and localizations. Am J Physiol. 1989; 257: pp. C621–C628. [PubMed: 2679124]
Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993; 123: pp. 1777–1788. [PMC free article: PMC2290891] [PubMed: 8276896] [Cross Ref]
Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol. 1996; 133: pp. 43–47. [PMC free article: PMC2120780] [PubMed: 8601611] [Cross Ref]
Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol. 2000; 279: pp. G25–G254. [PubMed: 10915631]
Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem. 2000; 275: pp. 27979–27988. [PubMed: 10856295] [Cross Ref]
Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood. 2001; 98: pp. 3699–3707. [PubMed: 11739175]
Watabe M, Nagafuchi A, Tsukita S, Takeichi MJ. Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin–catenin adhesion system in a dispersed carcinoma line. Cell Biol. 1994; 127: pp. 247–256. [PMC free article: PMC2120192] [PubMed: 7929567] [Cross Ref]
Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol. 1995; 129: pp. 203–217. [PMC free article: PMC2120375] [PubMed: 7698986] [Cross Ref]
Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003; 4: pp. 225–236. [PubMed: 12612641] [Cross Ref]
Cipolla MJ. Stroke and the blood–brain interface. In: Blood–Brain Barrier Interfaces, Spray D, Dermietzel R (Eds.). New York: Wiley, 2006. [Cross Ref]
Geockeler ZM, Wysolmerski RB. Myosin light chain kinase-regulated endothelial cell contraction: relationship between isometric tension, actin polymerization and myosin phosphorylation. J Cell Biol. 1995; 130: pp. 613–627. [PMC free article: PMC2120532] [PubMed: 7622562] [Cross Ref]
Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol. 1994; 267: pp. L223–L241. [PubMed: 7943249]
Yuan SY. Signal transduction pathways in enhanced microvascular permeability. Microcirculation. 2000; 7: pp. 395–405. [PubMed: 11142336] [Cross Ref]
Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol. 1995; 163: pp. 510–522. [PubMed: 7775594] [Cross Ref]
Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007; 12: pp. 54–61. [PubMed: 17198973] [Cross Ref]
Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood–brain barrier. Proc Natl Acad Sci USA. 1988; 85: pp. 632–636. [PMC free article: PMC279605] [PubMed: 2448779] [Cross Ref]
Broadwell RD. Pathways into, through, and around the fluid–brain barriers. NIDA Res Monogr. 1992; 120: pp. 230–258. [PubMed: 1501688]
Berne RM, Levy MN. The microcirculation and lymphatics. In: Physiology, Berne RM, Levy MN, Koeppen BM, Stanton BA (Eds.). St. Louis, MO: Mosby, 1998: pp. 429–441.
Rubin LL, Staddon JM. The cell biology of the blood–brain barrier. Annu Rev Neurosci. 1999; 22: pp. 11–28. [PubMed: 10202530] [Cross Ref]
Kniesel U, Wolburg H. Tight junctions of the blood–brain barrier. Cell Mol Neurobiol. 2000; 20: pp. 57–76. [PubMed: 10690502]
Baldwin A, Wilson L. Endothelium increases medial hydraulic conductance of aorta, possibly by release of ERDF. Am J Physiol. 1993; 264: pp. H26–H32. [PubMed: 8430854]
Baldwin AL, Wilson LM, Gradus-Pizlo I, Wilensky R, and March K. Effect ofatherosclerosis on transmural convection and arterial ultrastructure: implications for local intravascular drug delivery. Arterioscler Thromb Vasc Biol. 1997; 17: pp. 3365–3375. [PubMed: 9437181]
Shou Y, Jan KM, Rumschitzki DS. Transport in rat vessel walls. I. Hydraulic conductivities of the aorta, pulmonary artery, and inferior vena cava with intact and denuded endothelia. Am J Physiol. 2006; 291: pp. H2758–H2771. [PubMed: 16731638] [Cross Ref]
Davson H, Oldendorf WH. Transport in the central nervous system. Proc R Soc Med. 1967; 60: pp. 326–328. [PMC free article: PMC1901728] [PubMed: 6021942]
Reinhart CA, Gloor SM. Co-culture blood–brain barrier models and their use for pharmatoxicologic screening. Toxicol Vitro. 1997; 11: pp. 513–518. [PubMed: 20654344] [Cross Ref]
Bauer HC, Bauer H. Neural induction of the blood–brain barrier: still an enigma. Cell Mol Neurobiol. 2000; 20: pp. 13–28. [PubMed: 10690499]
Quick AM, Cipolla MJ. Pregnancy-induced upregulation of aquaporin 4 in brain and its role in eclampsia. FASEB J. 2004; 19: pp. 170–175. [PubMed: 15677340]
Price DL, Ludwig JW, Mi H, Schwarz TL, Ellisman MH. Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet. Brain Res. 2002; 956: pp. 183–193. [PubMed: 12445685] [Cross Ref]
Klatzo I. Neuropathologic aspects of brain edema. J Neuropathol Exp Neurol. 1967; 26: pp. 1–14. [PubMed: 5336776]
Dodson RF, Chu LW, Welch KM, Achar VS. Acute tissue response to cerebral ischemia in the gerbil: an ultrastructural study. J Neurol Sci. 1977; 33: pp. 161–170. [PubMed: 903780]
Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003; 23(2): pp. 137–149. [PubMed: 12571445] [Cross Ref]
Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation and physiological functions. Glia. 2000; 32: pp. 1–14. [PubMed: 10975906] [Cross Ref]
Walz W, Hertz L. Functional interactions between neurons and astrocytes. Part II: potassium homeostasis at the cellular level. Prog Neurobiol. 1983; 20: pp. 133–183. [PubMed: 6141593]
Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999; 28: pp. 85–96. [PubMed: 10533053] [Cross Ref]
Fenstermacher JD. Volume regulation of the central nervous system. In: Edema. Staub NC, Taylor AE (Eds.). New York: Raven Press, 1984: pp. 383–404.