NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Bigos S, Bowyer O, Braen G. Acute Low Back Problems in Adults. Rockville (MD): Agency for Health Care Policy and Research (AHCPR); 1994 Dec. (AHCPR Clinical Practice Guidelines, No. 14.)

  • This publication is provided for historical reference only and the information may be out of date.

This publication is provided for historical reference only and the information may be out of date.

Cover of Acute Low Back Problems in Adults

Acute Low Back Problems in Adults.

Show details

3 Clinical Care Methods

In the absence of red flags, treatment is similar for most patients with activity intolerance due to an acute episode of low back symptoms (Attachment A2). After assuring the patient that there is no hint of a dangerous problem and that a rapid recovery is expected, the goals are to provide accurate patient information about low back problems, to help provide comfort by means of symptom control methods, and to recommend activity modifications.

Patient Information

Patient Education About Low Back Symptoms

Panel findings and recommendations:

  • Patients with acute low back problems should be given accurate information about the following (Strength of Evidence = B):Expectations for both rapid recovery and recurrence of symptoms based on natural history of low back symptoms.Safe and effective methods of symptom control.Safe and reasonable activity modifications.Best means of limiting recurrent low back problems.The lack of need for special investigations unless red flags are present.Effectiveness and risks of commonly available diagnostic and further treatment measures to be considered should symptoms persist.

Patient education as defined here includes all forms of patient-oriented education about low back problems except for "back schools" (formally structured, classroom-style back education programs). Under this definition, patient education includes printed and audiovisual materials, information given by health care providers, and educational programs that are less formal than back schools.

Literature Reviewed.

Of 14 articles screened for this topic, 2 met the criteria for review. [67], [68] Other articles contained information used by the panel, but did not meet article selection criteria. [69]- [71]

Neither of the studies meeting the criteria focused solely on patients with acute low back problems. Both evaluated patients with low back problems of unspecified duration. Interventions evaluated included giving patients booklets on back pain [68] and holding a brief individual educational session during an emergency room visit or by phone after the visit. [67]

Evidence on Efficacy.

Jones, Jones, and Katz [67] evaluated educational intervention for patients with low back problems who came to a hospital emergency department and were referred for followup care. Patients receiving an educational intervention in the emergency department and/or a followup phone call were more likely than control patients to schedule and keep their followup appointment.

Roland and Dixon [68] conducted a randomized controlled trial (RCT) in which patients presenting with low back problems were assigned either to a group receiving an educational booklet on back problems or to a control group receiving no educational materials. In the first 2 weeks after the intervention, no differences were found between the education and control groups in number of consultations for back pain. However, in the period from 2 weeks to 1 year after the intervention, significantly fewer patients in the group receiving the booklet consulted physicians for back pain.

The importance of providing information to the patient is indicated in a study by Deyo and Diehl. [70] Failure to receive an explanation of the problem was the most frequently cited source of patient dissatisfaction among 140 patients with low back problems. Patients who felt they did not receive an adequate explanation wanted more diagnostic tests, were less satisfied with their visit, and were less likely to want the same doctor again, compared with patients who reported an adequate explanation.

Thomas [71] randomly assigned patients with symptoms (including low back pain), but no definite diagnosis, to one of four consultations: either one of two positive consultations, with and without treatment, or one of two negative consultations, with and without treatment. In the positive consultations, patients were given a firm diagnosis and told confidently that they would be better in a few days. The negative consultations were devised so that no firm assurance was given. Two weeks later the difference in recovery was significant between the positive and negative groups, but not between the treated and untreated groups.

A study of patients visiting family physicians for common symptoms, including back or neck pain, found that gaining patient agreement about the nature of the problem led to earlier resolution.sup]69

Potential Harms and Costs.

The potential risks, harms, and costs of educating patients are considered to below.

Summary of Findings.

Evidence indicates that educating patients about back problems may reduce use of medical resources, decrease patient apprehension, and speed recovery.

Structured Patient Education: Back School

Panel findings and recommendations:

  • In the workplace, back schools with worksite-specific education may be effective adjuncts to individual education efforts by the clinician in the treatment of patients with acute low back problems. (Strength of Evidence = C.)
  • The efficacy of back schools in nonoccupational settings has yet to be demonstrated. (Strength of Evidence = C.)

Back school is defined here as a structured program of education about low back problems, usually in a group setting. The therapeutic objectives are to give the patient information on the anatomy and natural history of disorders of the back; to teach the principles underlying posture, daily activities, and sports; and thereby to increase functional work capacity.

Literature Reviewed.

Of 35 articles screened for this topic, 15 reporting on 12 RCTs met criteria for review. [72]- [86]

Two meta-analyses regarding back schools were also examined. [87, 88] The panel used information from one other study that did not meet selection criteria. [89]

Evidence on Efficacy.

One of the few studies demonstrating the efficacy of back school [72] was conducted in the medical department of a Swedish automotive assembly plant. The 217 subjects all had nonspecific low back pain for less than 3 months and were randomly assigned to one of three interventions: back school, combined physiotherapy exercise, or placebo shortwave diathermy. The back school intervention consisted of four 45-minute sessions in 2 weeks and included the following topics: anatomy and causes of low back problems, muscle function and posture, ergonomics, and advice on physical activity. Patients attending back school had a shorter duration of sick leave during the initial episode than the other two treatment groups, but at the 1-year followup neither the number nor the length of absences from work owing to recurrences differed among the three treatment groups.

A meta-analysis by Keijsers, Bouter, and Meertens [87] evaluated eight studies of back schools done in group settings. [72, 73, 76, 79, 81, 85, 86, 89] These studies of back schools were compared in terms of program duration and content, patient selection criteria, number of patients, interventions, and outcome measures used. All eight studies were found to have major methodological problems. The authors found that although there was insufficient evidence to form a strong and valid judgment on the efficacy of back schools, the available evidence suggested that back schools are at most marginally effective.

Another meta-analysis by Linton and Kamwendo [88] reviewed the scientific literature on back schools and reported some positive effects in studies of patients with acute back pain. However, the authors found that most studies of back schools lacked adequate control groups and that the evidence on efficacy is inconclusive.

Potential Harms and Costs.

The potential risks and harms of back schools are considered low. Costs are variable, depending on the number of sessions and the setting, and range from moderately inexpensive to expensive.

Summary of Findings.

Available data on formal patient education programs, or back schools, vary in terms of program quality, length, content, costs, and outcomes. Only one study of a structured low back education program, performed in industry, was found to have a positive short-term impact on acute low back problems although no effect was seen at 1-year followup. [72] In summary, the published evidence on back school as a treatment for acute low back problems is limited in quantity and the results are contradictory.

Symptom Control Methods

Symptom control methods focus initially on providing comfort to keep the patient as active as possible while awaiting spontaneous recovery and, later in treatment, on aiding the activation needed to overcome a specific activity intolerance. The methods traditionally include oral medications, such as acetaminophen and nonsteroidal anti-inflammatory drugs (NSAIDs), as well as physical treatments. They also include therapeutic injections. Proving the efficacy of these methods to relieve acute low back symptoms is difficult due to the rapid rate of spontaneous recovery. The use of symptom control methods known to have less risk of harm than methods with proven efficacy may thus be warranted if such methods are inexpensive and allow an individual to remain active or build activity tolerance through exercise.

Symptom Control: Medications

Acetaminophen and NSAIDs

Panel findings and recommendations:

  • Acetaminophen is reasonably safe and is acceptable for treating patients with acute low back problems. (Strength of Evidence = C.)
  • Nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, are acceptable for treating patients with acute low back problems. (Strength of Evidence = B.)
  • NSAIDs have a number of potential side effects. The most frequent complication is gastrointestinal irritation. The decision to use these medications can be guided by comorbidity, side effects, cost, and patient and provider preference. (Strength of Evidence = C.)
  • Phenylbutazone is not recommended, based on an increased risk for bone marrow suppression. (Strength of Evidence = C.)

Acetaminophen, a nonnarcotic analgesic, has commonly been regarded as having an analgesic effect, but little or no known anti-inflammatory mechanism. The therapeutic objective for its use in acute low back problems is pain relief.

NSAIDs are a class of medications, including aspirin, ibuprofen, indomethacin, phenylbutazone, and a variety of other drugs. They have anti-inflammatory and analgesic properties as well as being prostaglandin inhibitors. The therapeutic objective of NSAIDs in treating acute low back problems is to decrease pain, presumably by reducing inflammation and promoting healing.

Literature Reviewed

Of 50 articles screened for this topic, 4 RCTs met the review criteria for adequate evidence about efficacy. [85], [90] - [92] Other articles did not meet the criteria, but contained information used by the panel. [93]- [103]

Evidence on Efficacy

The four RCTs that met review criteria for this topic were all double-blind studies comparing NSAIDs with a placebo in treating patients with low back problems. No studies were found that compared acetaminophen to placebo in treatment of patients with low back pain.

Two studies compared a single NSAID to a placebo: Amlie, Weber, and Holme [90] evaluated piroxicam. Postacchini, Facchini, and Palieri [85] evaluated diclofenac. The study by Berry, Bloom, Hamilton, et al. [92] had three treatment groups evaluating either one of two NSAIDs (diflunisal or naproxen sodium) or a placebo. The study by Basmajian [91] compared four treatment groups receiving an NSAID alone (diflunisal), a muscle relaxant alone (cyclobenzaprine), the two in combination, or a placebo.

Three of the studies evaluated patients with acute low back symptoms of less than 3 months' duration. [85], [90], [91] Berry, Bloom, Hamilton, et al. [92] evaluated patients with chronic low back pain.

Three studies found NSAIDs superior to a placebo for pain relief in the short term: from 1 week to 2 months of symptom duration. [85, 90, 92] The remaining study found no significant difference between NSAID and placebo in terms of pain improvement scores. [91]

Although there were no RCTs comparing acetaminophen to placebo for patients with low back pain, one nonplacebo-controlled RCT found an NSAID (diflunisal) superior to paracetamol (which is similar to acetaminophen) in producing pain relief for patients with chronic low back pain. [97] In addition, the literature on acetaminophen does show it to be more effective than placebo in studies of patients with nonback-related pain. [98], [102]

Several RCTs comparing efficacy of different NSAIDs in the same study have found no NSAID to be consistently more effective than the others. [96, 101, 102] However, these studies also suggest that individual patients report better pain relief from some NSAIDs compared with others. For this reason, Brooks and Day [93] suggest that patients change to a different NSAID if no relief is reported after a 2-week trial.

Potential Harms and Costs

The risks from the use of acetaminophen at usual doses are low. [95] However, high doses of acetaminophen can lead to liver damage, and massive single doses sometimes lead to fatal hepatic necrosis. Compared with NSAIDs, acetaminophen has a minimal effect on platelets and few gastrointestinal side effects since it is not a mucosal irritant. Acetaminophen is inexpensive. The expense of treatment with NSAIDs varies greatly, depending on the medication used and the length of treatment.

Potential complications of NSAIDs have been extensively studied. [93], [95] These include gastritis and other gastrointestinal complaints, including bleeding in 20 to 30 percent of those patients with active peptic ulcer problems. The degree of gastrointestinal side effects from NSAIDs appears to be dose related, but side effects can occur with one tablet. Ingestion of NSAIDs with meals or in combination with antacids has not been proven effective in reducing these gastrointestinal side effects. However, one medication (misoprostol), when taken with NSAIDs, has been shown to reduce NSAID-induced gastric erosion and the risk for gastroduodenal ulcers. [99], [100]

NSAIDs interfere with platelet adhesion and renal sodium metabolism. Their use in patients with a bleeding diathesis is considered contraindicated. They can be used in the presence of hypertension, renal disease, and edematous states, but only if great caution is exercised. [93] For these reasons, some experts caution that routine blood tests (such as CBC and serum chemistry screen) be done before treatment for older patients or those with vascular disease. These tests are also recommended if there is any suspicion of complications for those patients on prolonged NSAID therapy. [95]

Phenylbutazone has been associated with bone marrow suppression (aplastic anemia and agranulocytosis). Indomethacin has a higher reported incidence of gastrointestinal side effects than other NSAIDs. Otherwise, there is no significant demonstrated difference between remaining NSAID preparations in terms of the prevalence or severity of complications. [95]

Summary of Findings

There is fair to good evidence that NSAIDs are effective for reducing pain in patients with acute low back problems. Although no studies were found comparing acetaminophen to placebo in patients with back pain, there is evidence that acetaminophen is comparable in efficacy to NSAIDs for treating back problems and with fewer side effects. In studies of patients with nonback pain, no consistent difference in symptom relief has been demonstrated between acetaminophen and any available NSAID (including aspirin). Both NSAIDs and acetaminophen have been found to be generally adequate to achieve pain relief.

Muscle Relaxants

Panel findings and recommendations:

  • Muscle relaxants are an option in the treatment of patients with acute low back problems. While probably more effective than placebo, muscle relaxants have not been shown to be more effective than NSAIDs. (Strength of Evidence = C.)
  • No additional benefit is gained by using muscle relaxants in combination with NSAIDs over using NSAIDs alone. (Strength of Evidence = C.)
  • Muscle relaxants have potential side effects, including drowsiness in up to 30 percent of patients. When considering the optional use of muscle relaxants, the clinician should balance the potential for drowsiness against a patient's intolerance of other agents. (Strength of Evidence = C.)

Muscle relaxants are commonly used for the treatment of low back problems. Pharmacologically, these are usually benzodiazepines, other sedative medications, or antihistamine derivatives. The therapeutic objective of muscle relaxants is to reduce low back pain by relieving muscle spasm. However, the concept of skeletal muscle spasm is not universally accepted as a cause of symptoms, and the most commonly used muscle relaxants have no peripheral effect on muscle spasm.

Literature Reviewed

Of 42 articles screened for this topic, 12 RCTs met review criteria for adequate evidence about efficacy. [91, [104- 114]

Evidence on Efficacy

Three studies evaluating patients with low back problems either did not specify duration of symptoms or included a mix of patients with acute and chronic problems. [104, 113, 114] The remaining nine studies evaluated only patients with acute low back problems.

Of the articles that met review criteria, 9 evaluated a muscle relaxant compared with a placebo. [91, 104, 105, 108- 113] Two studies compared two different muscle relaxants. [107], [114] Some of the studies also compared a muscle relaxant to another medication, including a barbiturate; [110], [111] an NSAID; [91], [106] and acetaminophen. [91]

Of the nine studies comparing muscle relaxants with placebos, seven had results favoring the muscle relaxant. [104], [105], [108] - [111], [113] Two showed no difference in outcomes between muscle relaxant and placebo. [91], [112] In most studies, the positive effect for muscle relaxants was short-lived, lasting no more than 4 to 7 days, with no significant difference from placebo seen after this time.

Panel methodologists did a meta-analysis of the 12 studies that met panel review criteria. The studies were assessed for quality without knowledge of the results. There was one excellent study, [107] three good studies, [105], [109], [114] and eight fair studies. [91], [104], [106], [108], [110] - [113]

Each study was examined for outcome measures such as pain, functional capacity, or a global measure of improvement. When meta-analytically combined, the studies showed a trend toward greater improvement in the patients treated with muscle relaxants, but did not reach statistical significance. Even if the findings had reached significance, statistical combinations of such study results should be interpreted with caution. The conclusion of the meta-analysis was that muscle relaxants are probably, but not certainly, more effective than placebos in decreasing symptoms of acute low back problems. However, there was not enough evidence to determine whether muscle relaxants are more or less effective than NSAIDs for reducing symptoms or whether the addition of a muscle relaxant adds to the efficacy of an NSAID.

Potential Harms and Costs

Potential complications of muscle relaxants include drowsiness and dizziness, reported to be up to 30 percent higher in patients taking muscle relaxants compared with patients taking placebos. [91], [104], [105], [108] - [113] The cost of muscle relaxants is considered low to moderate.

Summary of Findings

There is moderate research evidence that muscle relaxants are more effective than placebo, but no evidence that they are better than NSAIDs, in relieving symptoms of acute low back problems. These medications have substantial potential side effects, especially a high incidence of drowsiness.

Opioid Analgesics

Panel findings and recommendations:

  • When used only for a time-limited course, opioid analgesics are an option in the management of patients with acute low back problems. The decision to use opioids should be guided by consideration of their potential complications relative to other options. (Strength of Evidence = C.)
  • Opioids appear to be no more effective in relieving low back symptoms than safer analgesics, such as acetaminophen or aspirin or other NSAIDs. (Strength of Evidence = C.)
  • Clinicians should be aware of the side effects of opioids, such as decreased reaction time, clouded judgment, and drowsiness, which lead to early discontinuation by as many as 35 percent of patients. (Strength of Evidence = C.)
  • Patients should be warned about potential physical dependence and the danger associated with the use of opioids while operating heavy equipment or driving. (Strength of Evidence = C.)

Oral opioid analgesics commonly given to patients with acute low back problems include morphine derivatives (opioids) and synthetic opioids. The therapeutic objective in treating low back problems is temporary pain relief.

Literature Reviewed

No RCTs were found that compared opioid analgesics (either alone or in combination with other drugs) to a placebo. Therefore, three studies were evaluated that compared opioid analgesics to other medications, [115] - [117] recognizing that results of the evaluation would not entirely answer the question of whether opioids are any better than placebo for back symptoms. Another article [118] contained information used by the panel.

Evidence on Efficacy

All three studies evaluated patients with acute low back problems, but with a mixed group of medications. Two reports compared acetaminophen with codeine to diflunisal (an NSAID) with patients treated for 1 and 2 weeks, respectively. [115], [116] The third study compared three groups, one group receiving codeine, one oxycodone plus aspirin, and one acetaminophen. [117]

At the conclusion of treatment, Muncie, King, and DeForge [116] and Brown, Bodison, Dixon, et al. [115] found no significant differences between groups in terms of pain relief or functional improvement.

Wiesel, Cuckler, Deluca, et al., [117] who evaluated a population of military recruits with acute low back pain, found no difference between the three medication groups in amount of time before patients returned to full activities. Pain relief was claimed to be superior in groups receiving opioid analgesics compared with acetaminophen, with the greatest effect seen in the first 3 days of treatment. No statistics were reported to support the claim.

Potential Harms and Costs

Side effects reported by subjects receiving acetaminophen with codeine included dizziness, fatigue, inability to concentrate, impaired vision, drowsiness, nausea, and constipation. [115], [116] In one study, 35 percent of subjects receiving acetaminophen with codeine had to discontinue the medication because of intolerable side effects. [116] Prolonged use of opioid analgesics is associated with the development of tolerance and physical dependence. A risk of developing physical dependence with short-term use of opioids has also been reported. [118]

The expense of treatment with these medications varies greatly, depending on the medication used and the length of treatment.

Summary of Findings

There are no well-designed controlled studies that evaluate the use of opioid analgesics compared with no treatment in patients with acute low back problems. The studies reviewed found that patients taking opioid analgesics did not return to full activity sooner than patients taking NSAIDs or acetaminophen. In addition, two studies found no difference in pain relief between NSAIDs and opioids. Finally, side effects of opioid analgesics were found to be substantial, including the risk for physical dependence. These side effects are an important concern in conditions that can become chronic, such as low back problems.

Oral Steroids

Panel findings and recommendations:

  • Oral steroids are not recommended for the treatment of acute low back problems. (Strength of Evidence = C.)
  • A potential for severe side effects is associated with the extended use of oral steroids or the short-term use of steroids in high doses. (Strength of Evidence = D.)

Oral steroids (corticosteroids) are used by some clinicians in the treatment of patients with acute low back problems. The therapeutic objective is to reduce inflammation in an attempt to promote healing and reduce pain.

Literature Reviewed

Of six articles screened for this topic, the only one meeting criteria for review was Haimovic and Beresford. [119] Two other articles also contained information used by the panel. [120], [121]

Evidence on Efficacy

Haimovic and Beresford, [119] in a double-blind RCT, evaluated patients with low back pain who had findings of a single nerve root irritation (symptom duration of patients not specified). Patients were randomly assigned to receive a 1-week course of either an oral dexamethasone or a placebo. On followup at the end of treatment and at 1 year, no significant differences were found between the two groups in terms of pain relief.

Potential Harms and Costs

The incidence of side effects associated with steroids correlates with the potency of the drug, dosage, and duration of administration. Well-recognized complications from the prolonged use of oral steroids include suppression of pituitary-adrenal function, fluid and electrolyte disturbance, hyperglycemia, demineralization of bone, and immunosuppression (with increased susceptibility to infection). While many of these effects can be reduced or eliminated with alternate-day therapy, even short-term daily use of high-dose steroids can contribute to posterior subcapsular cataract formation, myopathy, central nervous system disturbance, and avascular necrosis of bone, especially of the femoral head. [120], [121]

The expense of treatment varies greatly, depending on the medication used and the length of treatment.

Summary of Findings

The limited available research evidence indicates that oral steroids do not appear to be an effective treatment for patients with acute low back problems. Serious potential complications are associated with long-term use, but potential complications appear minimal with short-term use.

Colchicine

Panel findings and recommendations:

  • Based on conflicting evidence of effectiveness as well as the potential for serious side effects, colchicine is not recommended for treating patients with acute low back problems. (Strength of Evidence = B.)

Colchicine has been used primarily to treat acute attacks of gouty arthritis and can be administered intravenously or orally. The therapeutic objective of using the drug in patients with acute low back problems is to reduce inflammation and thereby reduce pain.

Literature Reviewed

Of 13 articles screened, 3 RCTs met criteria for review. [122]- [124] Schnebel and Simmons [123] evaluated only patients with acute low back problems of less than 3 months' duration. Meek, Giudice, McFadden, et al. [122] evaluated patients with symptoms of more than 2 months. Simmons, Harris, Koulisis, et al. [124] evaluated those with symptoms lasting up to 6 months.

Evidence on Efficacy

Schnebel and Simmons [123] found no statistically significant difference between oral colchicine and a placebo, although the oral colchicine group did have significantly more diarrhea and vomiting than the placebo group. Simmons, Harris, Koulisis, et al., [124] who compared groups receiving either intravenous colchicine or intravenous saline, found significantly improved pain ratings for the colchicine group, but pain relief was short-lived (lasting from 1 hour to 2 days). Also, two patients in the colchicine group developed complications (diarrhea and a local inflammatory response). Meek, Giudice, McFadden, et al., [122] who evaluated for 1 month a group receiving one dose of intravenous colchicine followed by oral colchicine, compared with a group receiving placebo, found significantly greater pain relief in the colchicine group.

Potential Harms and Costs

Potential complications from the use of colchicine are gastrointestinal irritation, skin problems, severe chemical cellulitis from intravenous infiltration, and bone marrow suppression with agranulocytosis. [124] The expense of treatment with colchicine varies greatly, depending on whether oral or intravenous administration is used and on length of treatment.

Summary of Findings

Research evidence is limited and conflicting on whether colchicine, given either orally or intravenously, is an effective treatment for patients with acute low back problems. Serious potential side effects have been reported with use of this medication.

Antidepressant Medications

Panel findings and recommendations:

  • Antidepressant medications are not recommended for the treatment of acute low back problems. (Strength of Evidence = C.)

Antidepressant medications have been widely used for both depressed and nondepressed patients with chronic low back problems. The extent to which these medications are used in treating patients with acute low back problems is unknown. Some researchers have hypothesized that the medications may possibly have a pain-relieving effect in addition to antidepressant properties. If so, the medications could help some patients who have chronic pain whether or not the patients are also depressed. The therapeutic objective of using antidepressant medications for low back problems is to reduce pain.

Literature Reviewed

Of 18 articles screened, 3 RCTs met review criteria. [125]- [127] Other articles also contained information used by the panel. [128], [129]

Evidence on Efficacy

No studies were found evaluating the efficacy of antidepressant medications for treatment of acute low back problems. The three studies reviewed all compared an antidepressant medication to a placebo in a double-blind fashion in patients with chronic, not acute, low back pain. These studies all randomized patients to receive either a pharmacologically inert placebo or an antidepressant medication. Alcoff, Jones, Rust, et al. [125] used imipramine, as did Jenkins, Ebbutt, and Evans. [127] Goodkin, Gullion, and Agras [126] used trazodone. The studies found no significant differences between groups receiving antidepressant and placebo in terms of pain reduction, functional limitations, depression, or the use of opioids. All three studies had methodological flaws, including small sample sizes, lack of power calculations, and incomplete description of followup.

Potential Harms and Costs

Antidepressant medications can produce a variety of side effects including dry mouth, drowsiness, constipation, urinary retention, orthostatic hypotension, and mania. [128], [129]

The cost of treatment with antidepressant medications can vary from low to high depending on the medication used, dose, and length of treatment.

Summary of Findings

No studies were found that evaluated the efficacy of antidepressant medications for treatment of acute low back problems. The studies reviewed all evaluated patients with chronic low back problems. They found no significant differences between antidepressants and placebo on any outcome measured. Numerous reported side effects are associated with antidepressant medications, but the potential for serious side effects is small in otherwise healthy adults.

Symptom Control: Physical Treatments

Spinal Manipulation

Panel findings and recommendations:

  • Manipulation can be helpful for patients with acute low back problems without radiculopathy when used within the first month of symptoms. (Strength of Evidence = B.)
  • When findings suggest progressive or severe neurologic deficits, an appropriate diagnostic assessment to rule out serious neurologic conditions is indicated before beginning manipulation therapy. (Strength of Evidence = D.)
  • There is insufficient evidence to recommend manipulation for patients with radiculopathy. (Strength of Evidence = C.)
  • A trial of manipulation in patients without radiculopathy with symptoms longer than a month is probably safe, but efficacy is unproven. (Strength of Evidence = C.)
  • If manipulation has not resulted in symptomatic improvement that allows increased function after 1 month of treatment, manipulation therapy should be stopped and the patient reevaluated. (Strength of Evidence = D.)

Spinal manipulation includes many different techniques. For this guideline, manipulation is defined as manual therapy in which loads are applied to the spine using short or long lever methods. The selected joint is moved to its end range of voluntary motion, followed by application of an impulse loading. The therapeutic objectives of manipulation include symptomatic relief and functional improvement.

Literature Reviewed

Of the 112 articles screened for this topic, 13 reporting on 12 RCTs met criteria for review. [72], [85], [130] - [140]

The panel also considered recent meta-analyses and cost analyses. [141]- [144] In addition, the panel used information from articles that did not meet selection criteria. [145]- [149]

Evidence on Efficacy

The meta-analysis by Shekelle, Adams, Chassin, et al. [144] was based on 29 controlled trials of manipulation for low back problems. Nine of the studies used in the meta-analysis focused on patients with acute low back problems and tested the effect of manipulation against sham manipulation [136] or various other conservative treatments. [72], [132], [135], [137], [138], [140], [145], [149]

Of those RCTs that evaluated manipulation in patients with acute low back pain, the two highest quality studies used similar research designs. [136], [137] Both these studies randomly assigned patients to either a group receiving manipulation or a nontreatment control group, with patients stratified by whether symptoms had lasted less than 14 days, 14 to 28 days, or over 28 days in one study. [137] For patients with 14 to 28 days of symptoms, both studies found the manipulation groups had statistically significant improvement in pain relief and functioning compared with the control groups. However, this effect was only seen within the first 2 weeks after starting treatment. For patients with symptoms of less than 14 days or over 28 days, no differences in improvement were found between the manipulation and control groups for any followup times.

A meta-analysis of the remaining seven studies also showed statistically significant short-term effects of manipulation in hastening recovery from low back problems. [144] Another meta-analysis, based on 23 randomized controlled trials of manipulation or mobilization, came to a similar conclusion.[sup141 This analysis indicated that, in patients with acute low back problems without radiculopathy, manipulation reduces pain and has positive short-term impact on daily functioning. Most studies have concentrated upon outcomes assessed within the first month of care.

The meta-analysis by Shekelle, Adams, Chassin, et al. [144] analyzed, in addition, studies of spinal manipulation in patient groups who had predominantly chronic low back problems, a mix of acute and chronic low back problems, or pain of undetermined duration. Studies of manipulation in these groups had conflicting results concerning the efficacy of manipulation.

Shekelle, Adams, Chassin, et al. [144] also analyzed three studies on the use of spinal manipulation for patients with low back problems who had radiculopathy, but concluded that the evidence was insufficient to demonstrate efficacy. [131], [146], [148]

Potential Harms and Costs

Shekelle, Adams, Chassin, et al. [144] described published case reports of patients presenting with sciatica who had increasing neurologic deterioration following manipulation, but estimated that the risk of serious complications from lumbar spinal manipulation is small and may vary with the clinical condition with which the patient presents. No systematic report of frequency of complications from spinal manipulative therapy has been published. Mandell, Lipton, Bernstein, et al. [147] listed autonomic disturbances such as faintness, perspiration, and hyperventilation as common short- term reactions to manipulation. The total cost of manipulative therapy is determined by the frequency and duration of care.

Summary of Findings

The evidence for effectiveness of manipulation varies depending on the duration and nature of the patient's presenting symptoms. For patients with acute low back symptoms without radiculopathy, the scientific evidence suggests spinal manipulation is effective in reducing pain and perhaps speeding recovery within the first month of symptoms. For patients whose low back problems persist beyond 1 month, the scientific evidence on effectiveness of manipulation was found to be inconclusive. For patients with radiculopathy, the scientific evidence was also inconclusive about either the effectiveness or the potential harms of manipulation. Finally, the panel offered the opinion that, for patients with acute low back problems and findings of possible progressive or severe neurologic deficits, assessment to rule out serious neurologic conditions is indicated before initiating manipulation therapy.

Physical Agents and Modalities

Panel findings and recommendations:

  • The use of physical agents and modalities in the treatment of acute low back problems is of insufficiently proven benefit to justify their cost. As an option, patients may be taught self- application of heat or cold to the back at home. (Strength of Evidence = C.)

Physical agents and modalities include ice, heat (including diathermy), massage, ultrasound, cutaneous laser treatment, and electrical stimulation (not transcutaneous electrical nerve stimulation or TENS). The therapeutic objective of physical agents and modalities is to provide symptomatic relief and, for some modalities, to reduce inflammation, "muscular symptoms," or joint stiffness.

Literature Reviewed

Of 25 articles screened for this topic, 10 reporting on 8 RCTs met criteria for review. [85], [133], [140], [150] - [156]

Evidence on Efficacy

Many studies compared different combinations of physical agents and modalities, making it difficult to evaluate effectiveness of specific modalities. Only two studies evaluated physical agents and modalities in patients with acute low back pain. [85], [140] Neither found significant differences in self-rated pain relief or other outcome measures between patient groups receiving physical agents and modalities (including diathermy, ultrasound, flexion/extension exercises, massage, and electrotherapy) and groups receiving a placebo.

The other studies reported on groups of either chronic or a mix of acute and chronic low back pain patients. Three studies found no significant differences in patient-reported outcome measures between treatments (including cutaneous laser, diathermy, electrotherapy, exercise, heat, massage, and ultrasound) and a placebo. [133], [150] - [153] Manniche, Hesselsoe, Bentzen, et al. [155] found intensive back-strengthening exercises superior to physical agents and modalities on patient-rated outcome measures, but the group receiving physical agents/modality treatment was not compared with a control group receiving no intervention. Melzack, Vetere, and Finch [156] found that a group receiving TENS therapy had greater pain relief than a group receiving massage therapy. Again, treatments were not compared with a no-intervention control. Linton, Bradley, Jensen, et al. [154] found that a group given a combination of physical agents and modalities, ergonomic education, and behavioral therapy had significantly better outcomes than a control group receiving no intervention, but the effect of physical agents and modalities could not be determined.

Potential Harms and Costs

Risks from potential complications of physical agents and modalities are believed to be small. A possible exception is in pregnant patients, for whom ultrasound and diathermy are not recommended because of theoretical risks to the fetus.

The costs of individual treatment sessions using physical agents and modalities are variable, determined by the number of modalities used, the length of treatment, and the number of treatment visits.

Summary of Findings

No well-designed controlled trials support the use of physical agents and modalities as treatments for acute low back problems. However, some patients with acute low back problems appear to have temporary symptomatic relief with physical agents and modalities. Therefore, self-administered home programs for modalities involving heat or cold are considered a treatment option.

Transcutaneous Electrical Nerve Stimulation

Panel findings and recommendations:

  • Transcutaneous electrical nerve stimulation (TENS) is not recommended in the treatment of patients with acute low back problems. (Strength of Evidence = C.)

A TENS unit is a small battery-operated device worn by the patient. It provides continuous pulses of electricity by way of surface electrodes. Presumably, TENS produces a counter-stimulation of the nervous system, which can modify pain perception. The therapeutic objective of TENS in patients with low back problems is to provide symptomatic pain relief.

Literature Reviewed

Of 34 articles screened for this topic, 9 articles reporting on 8 RCTs met criteria for review. [156]- [164] Only one study evaluated patients with acute low back pain. [160]

Evidence on Efficacy

Hackett, Seddon, and Kaminski [160] evaluated a treatment called "electroacupuncture," which consisted of low-amplitude pulsed electrical current administered by way of surface electrodes rather than by needles. The panel considered this a variation of TENS rather than a type of acupuncture since no needling was involved. For the study, 37 patients with low back pain of less than 3 days' duration were randomly assigned to groups receiving either two 15-minute treatments of electroacupuncture and placebo tablets or paracetamol tablets and placebo electroacupuncture with no current applied. There was no difference in results at 1 and 2 weeks. By the sixth week after the initial treatment, patients who had electroacupuncture reported significantly less pain, measured on a visual analog pain-rating scale, compared with those who took paracetamol.

The other studies reviewed focused on patients with chronic low back pain or other types of chronic pain or on a mixture of acute and chronic low back pain patients. The largest randomized study of TENS was carefully blinded and found no benefit for TENS over sham TENS in patients with chronic low back problems. [157] The remaining studies were of variable quality and were inconclusive regarding efficacy of TENS for relieving chronic pain.

Potential Harms and Costs

The risks of TENS are considered low. The cost of this treatment is considered low to moderate (depending upon whether the equipment is rented or owned by the patient).

Summary of Findings

There is inconclusive evidence of the efficacy of TENS in patients with acute low back problems. Only one published study addresses this issue, and its findings are considered weak.

Shoe Insoles and Shoe Lifts

Panel findings and recommendations:

  • Shoe insoles may be effective for patients with acute low back problems who stand for prolonged periods of time. Given the low cost and low potential for harms, shoe insoles are a treatment option. (Strength of Evidence = C.)
  • Shoe lifts are not recommended for treatment of acute low back problems when lower limb length difference is <=2 cm. (Strength of Evidence = D.)

Shoe insoles (or inserts) are devices placed inside shoes that may vary from over-the-counter foam or rubber inserts to custom-made orthotics. The therapeutic objective of shoe inserts is the reduction of back pain.

Shoe lifts (or raises) are additions made to the heel or sole of a shoe to increase its height. The therapeutic objective of shoe lifts is to compensate for lower limb length inequality and thereby reduce back pain.

Literature Reviewed

Of seven articles reviewed for this topic, only one was an RCT that met criteria for review. [165] Other articles contained information used by the panel, but did not meet article selection criteria. [166]- [168]

Evidence on Efficacy

Basford and Smith [165] used a randomized crossover design to evaluate the use of shoe insoles compared with no insoles in adults with mild back pain who spent at least 75 percent of each workday standing. Of 39 subjects studied, 44 percent reported reduced back pain when using the insoles, 3 percent reported increased back pain, and 51 percent reported no difference. Of the subjects who reported no improvement, many stated that their shoes were too tight to allow insoles to be added comfortably.

There were no controlled trials that evaluated shoe lifts in patients with either acute or chronic low back problems. The extent to which leg length inequality might be associated with low back problems has not been established. Lower limb length differences of up to 2 cm are frequently seen in subjects with no history of low back problems. [167], [168] One study evaluated aircraft industry workers and found no correlation between a 2-cm limb length inequality and either previous back problems or later reports of back complaints. [166]

Potential Harms and Costs

Shoe insoles and shoe lifts are low-risk treatments; their cost varies from low (for ready-made items) to moderate (for custom-made orthotics).

Summary of Findings

Limited evidence (one crossover study) indicates that shoe insoles may reduce back pain in some individuals with mild back complaints. There is no evidence they provide any long-term benefit. The extent to which leg length inequality might be associated with acute low back problems has not been established, although differences of less than 2 cm are unlikely to be problematic.

Lumbar Corsets and Back Belts

Panel findings and recommendations:

  • Lumbar corsets and support belts have not been proven beneficial for treating patients with acute low back problems. (Strength of Evidence = D.)
  • Lumbar corsets, used preventively, may reduce time lost from work due to low back problems in individuals required to do frequent lifting at work. (Strength of Evidence = C.)

Lumbar support devices for low back problems include lumbar corsets and support belts, back braces and molded jackets, and back rests for chairs and car seats. The panel decided to evaluate only lumbar corsets and support belts for this guideline. Among theories on why lumbar corsets and support belts might help treat or prevent low back problems are that they compress the abdomen (causing increased intra-abdominal pressure, which unloads the vertebral column) and/or that they act as a mechanical reminder to decrease bending. Therapeutic objectives of lumbar supports are to control pain and/or protect against injury.

Literature Reviewed

Of 31 articles screened, 3 RCTs about lumbar corsets and support belts met review criteria for adequate evidence about efficacy. [131], [169], [170] Another article contained information used by the panel, but did not meet selection criteria. [171] None of these studies evaluated only patients with acute low back problems. One evaluated only chronic low back pain patients. [171] One evaluated a mixed group of acute and chronic low back pain patients. [131] The other two studies evaluated the prevention of low back problems in workers doing frequent lifting tasks. [169], [170]

Evidence on Efficacy

Coxhead, Meade, Inskip, et al. [131] compared lumbar corset use to traction, exercise, and manipulation but included other interventions, making the direct effect of corset use difficult to determine.

Million, Haavik Nilsen, Jayson, et al. [171] compared the use of two types of lumbar corsets, one with and one without a lumbar support, in patients with chronic low back problems (all with symptoms longer than 6 months). This study was an RCT, but had too few subjects to meet review criteria. Although this study found a considerable and significant improvement in symptoms in the group wearing corsets with a lumbar support, no control group was used in the study to ascertain the effect of corset use as compared with no corset use.

Walsh and Schwartz, [170] in an RCT, evaluated 90 grocery warehouse workers not currently receiving treatment for low back problems. Subjects were randomly assigned to three groups. One group received a custom-molded lumbar corset plus a 1-hour training program on proper lifting, one the training program alone, and one no intervention. During the 6-month study period, no significant differences were reported between groups in back injury rates or in time lost from work due to back problems. However, the group assigned to lumbar corsets plus training showed significantly less time loss from work due to back symptoms during the 6 months of the study when compared with the prior 6-month period. No similar significant effect was found for the other two groups.

Reddell, Congleton, Huchingson, et al., [169] in an RCT, evaluated 642 airline baggage handlers randomly assigned to use of a lumbar weightlifting belt, with and without a supplemental training class, or to the training class alone, or to no intervention. The 1-hour training course included instruction on proper lifting techniques, and employees were given stretching exercises to be done before each flight. Over an 8-month period, no significant differences were found between groups studied in back injury claims or in days lost from work. However, the validity of these results is questionable since 58 percent of workers assigned to wear weightlifting belts stopped using them before the end of the study period.

Potential Harms and Costs

Some authors suggest that the prolonged use of lumbar corsets and support belts may lead to a decrease in strength of abdominal and back muscles, but no clear evidence of this was found in patients with low back problems. Walsh and Schwartz [170] found that no such weakness occurred in workers who wore lumbar corsets for 6 months as a preventive measure. In the study by Reddell, Congleton, Huchingson, et al., [169] the majority of workers who stopped wearing weightlifting belts complained that the belts were too hot and/or too uncomfortable.

The cost of lumbar corsets and support belts varies from low to moderately expensive.

Summary of Findings

There is no evidence that lumbar corsets or support belts are effective for treating acute low back problems and conflicting evidence on whether lumbar corsets and support belts are effective for preventing or reducing the impact of low back problems in subjects who do frequent lifting at work.

Traction

Panel findings and recommendations:

  • Spinal traction is not recommended in the treatment of patients with acute low back problems. (Strength of Evidence = B.)

Traction, when used for low back problems, involves the application of intermittent or continuous force along the axis of the spine in an attempt to elongate the spine by either mechanical or manual means. The most common type used for low back pain is pelvic traction, in which a snug girdle around the pelvis is attached to weights hung at the foot of the bed. The therapeutic objective of traction for patients with low back problems is to reduce pain.

Literature Reviewed

Of 31 articles screened for this topic, 7 articles reporting on 6 RCTs met criteria for review. [131], [138], [139], [172] - [175] Another article contained information used by the panel, but did not meet selection criteria. [176]

Evidence on Efficacy

A meta-analysis of the studies on traction was done by the panel methodologists. Quality rating was done for the six RCTs reviewed without knowledge of study results. There were no excellent studies, one good study, [173] three fair studies, [131], [139], [172] a fair study reported on by Mathews, Mills, Jenkins, et al., [138] and one poor study. [175]

All the studies involved patients with acute low back pain of less than 3 months' duration, but studies varied on whether patients with a history of previous low back problems were excluded. Groups receiving traction were compared with groups receiving sham traction. [173], [174] Traction combined with bed rest and corset use was compared with bed rest and corset use alone. [172] Traction was compared with heat [138] and with isometric exercise. [175] In addition, Coxhead, Meade, Inskip, et al. [131] studied groups receiving various combinations of traction, manipulation, exercise, and corset use in a multifactorial design with 16 cells. The six studies varied with respect to types of traction, control groups, outcome measures, and assessment periods. For this reason, no attempt was made to quantitatively combine these data.

Five of the six studies showed no difference between traction and the comparison group. In one study, the group treated with bed rest and corset use combined with traction had less pain at 1 week than those receiving bed rest and corset use without traction, but this difference was gone by 3 weeks. [172] Moreover, some criticize this study because of attention bias against those in the control group. In general, the studies did not indicate that traction in any form is beneficial in terms of pain relief, physiological status, length of hospital stay, functional outcome, or perception of overall improvement for patients with acute low back problems. The studies were too small to determine if traction actually harms patients with acute low back problems.

Potential Harms and Costs

The potential harms from traction relate to debilitation due to prolonged bed rest, including loss of muscle tone, bone demineralization, and the risk of thrombophlebitis. There is added risk of increased intraocular pressure and blood pressure with inverted hanging traction. [176] The cost of traction is considered low to moderate if it is done on an outpatient basis, or high if the patient is hospitalized for traction.

Summary of Findings

Evidence does not demonstrate traction to be effective in the treatment of patients with acute low back problems.

Biofeedback

Panel findings and recommendations:

  • Biofeedback is not recommended for treatment of patients with acute low back problems. (Strength of Evidence = C.)

Biofeedback involves translating the physiologic activity of a patient's muscular response into a visual or auditory signal that allows the patient to try to facilitate or inhibit the muscular activity. The therapeutic objective is to reduce muscle tension and thereby reduce pain. Biofeedback has been advocated primarily for patients with chronic low back problems.

Literature Reviewed

Of 13 articles screened for this topic, 4 reporting on 5 RCTs met criteria for review. [177]- [180] Other studies did not meet panel review criteria because they had fewer than 10 subjects per treatment group, but were used in a meta-analysis. [181], [182] All of the studies involved patients with chronic low back pain. In most subjects, pain had persisted for several years.

Evidence on Efficacy

Because these trials presented conflicting results, a meta-analysis was begun by the panel methodologists. Studies were assessed for quality without knowledge of the results. There were no excellent studies, one good study, [178] three fair studies, [177], [180], [182] and a fair study reported by Flor, Haag, Turk, et al. [179] and by Flor, Haag, and Turk. [181] There were no poor studies.

The studies involved comparisons of biofeedback with sham biofeedback; [178], [179], [181] biofeedback combined with another treatment in comparison with the other treatment alone; [177] and biofeedback alone compared with some other treatment. [179], [181], [182]

The study with a good quality rating showed no benefit for biofeedback over sham biofeedback. [178] Two studies reported patients in the biofeedback groups developed significantly better control of paraspinous muscle electromyographic activity. [178], [180] In neither study did this reduce pain. Thus, of the five studies, two showed no benefit for biofeedback. [178], [180] Two showed a benefit for biofeedback: Asfour, Khalil, Waly, et al. [177] and the study reported by Flor, Haag, Turk, et al., [179] and by Flor, Haag, and Turk. [181] One study showed a slight benefit for biofeedback compared with a placebo condition, but reported an even better benefit for relaxation training. [182] Statistical combination of results from these studies was not done because it would require requesting the original data from the authors.

Conclusions from the attempted meta-analysis were that biofeedback as a treatment for low back problems has been studied only for chronic problems, and that most of the studies are of mediocre quality and arrive at conflicting results.

Potential Harms and Costs

The risks for biofeedback are considered low. The costs of biofeedback treatment are determined by the number of treatment visits.

Summary of Findings

There is conflicting evidence on the effectiveness of biofeedback for treating patients with chronic low back problems. However, this technique has not been studied in patients with acute low back problems.

Symptom Control: Injection Therapy

Trigger Point and Ligamentous Injections

Panel findings and recommendations:

  • Trigger point injections are invasive and not recommended in the treatment of patients with acute low back problems. (Strength of Evidence = C.)
  • Ligamentous and sclerosant injections are invasive and not recommended in the treatment of patients with acute low back problems. (Strength of Evidence = C.)

Trigger point injections involve the injection of local anesthetic into soft tissues (muscles) near localized tender points in the paravertebral area. [189] The theory that such trigger points are responsible for causing or perpetuating low back pain is controversial and disputed by many experts. Other articles reviewed for this topic involve the injection of various substances (especially sclerosing agents) into interspinal ligaments and ligamentous muscle attachments in the low back. The theory behind such treatment is that this stimulates formation of scar tissue in ligaments. The therapeutic objective of both trigger point injections and ligamentous injections is to reduce low back pain.

Literature Reviewed

Of 14 articles screened for the topics of trigger point and ligamentous injections, 6 RCTs met criteria for review. Three of these evaluated trigger point injections into muscle. [183]- [185] Three evaluated injections into ligamentous structures in the back. [186]- [188] Other articles contained information used by the panel, but did not meet article selection criteria. [189]- [190]

Evidence on Efficacy

Of the articles evaluating trigger point injections, only Frost, Jessen, and Siggaard-Andersen [184] evaluated patients with acute low back problems. The study population, however, included patients with acute neck or shoulder pain, and data were not given separately for the patients with low back problems. For the other two RCTs on trigger point injections, either the patients evaluated had chronic low back problems [183] or the duration of symptoms was not reported. [185]

Various medications were used for trigger point injections. Frost, Jessen, and Siggaard-Andersen [184] had two groups receiving either local anesthetic or saline. Bourne [183] had three groups receiving methylprednisolone and lignocaine, or triamcinolone and lignocaine, or lignocaine alone. Garvey, Marks, and Wiesel [185] had four groups receiving lidocaine alone, or lidocaine combined with a steroid, or needle acupuncture (with no injection of material), or vapocoolant spray to the skin followed by acupressure (using a plastic needle guard). Two studies included control groups who had no medication injected into muscles, [184], [185] but none of the three studies included a group with no intervention.

Frost, Jessen, and Siggaard-Andersen [184] and Garvey, Marks, and Wiesel [185] found no differences between groups in pain relief or other outcome measures on followup at 1 and 2 weeks posttreatment, respectively. Bourne[183] found significantly greater pain relief at 3 months followup for the two groups receiving steroid injections than for the group receiving injections of local anesthetic alone.

Of the three articles evaluating injections into ligamentous structures, two studies evaluated patient groups including some patients with acute low back problems. [186], [188] One study evaluated a subgroup of patients with acute low back problems, all with pain over the medial iliac crest. [186] In the other study, patients were only described as having low back problems for greater than 1 month's duration without specifying how many patients had either acute or chronic symptoms. [188] The third article evaluating ligamentous injections evaluated only patients with chronic low back problems. [187]

Various substances were injected into different ligamentous structures of the low back. Collée, Dijkmans, Vandenbroucke, et al. [186] studied groups receiving injections of either local anesthetic or saline into an area of tenderness over the medial iliac crest (not specified if into muscle or ligamentous attachments). Ongley, Klein, Dorman, et al. [187] evaluated groups receiving injections of either a dilute phenol solution (sclerosing agent) or saline into the lumbar interspinal ligament. Sonne, Christensen, Hansen, et al. [188] evaluated groups receiving injections of either a combination of local anesthetic and steroid or saline alone into the iliolumbar ligament.

Collée, Dijkmans, Vandenbroucke, et al. [186] found that for patients with acute low back pain, there was no significant difference in pain relief between the saline or anesthetic groups, either immediately postinjection or at 1 or 2 weeks followup. Ongley, Klein, Dorman, et al. [187] found greater improvement in pain and disability scores for the patients receiving phenol injections (intended to induce scar) as compared with saline. Sonne, Christensen, Hansen, et al. [188] found that the group receiving injections with a combination of steroid and local anesthetic had significantly greater improvement in symptoms at 2 weeks followup than did the group receiving injections with saline.

Potential Harms and Costs

The potential risks of trigger point injections include damage to nerves or other tissues, infection, and hemorrhage. [190] The cost for this treatment is considered low to moderate.

Summary of Findings

Based on limited research evidence in studies that included patients with chronic problems, the efficacy of trigger point or ligamentous injections for treating acute low back problems appears equivocal. The injections can expose patients to serious potential complications.

Facet Joint Injections

Panel findings and recommendations:

  • Facet joint injections are invasive and not recommended for use in the treatment of patients with acute low back problems. (Strength of Evidence = C.)

In treatment of low back problems, facet joint injections involve the injection of local anesthetics and/or corticosteroids into or around facet joints of the lumbar spine, with needle placement aided by fluoroscopy. The theoretical basis is that some patients with low back problems have a "facet syndrome" with pain arising from facet joints. The facet syndrome reportedly involves patients with primarily low back pain (unilateral or bilateral) and no root tension signs or neurologic deficits, the pain usually being aggravated by extension of the spine. [191] The therapeutic objective of facet joint injections is temporary relief from motion-limiting pain so the patient may proceed into an appropriate exercise program. [198]

Literature Reviewed

Of 17 articles screened for this topic, 5 RCTs met review criteria. [191]- [195] Other articles contained information used by the panel, but did not meet criteria. [196], [197]

Evidence on Efficacy

No articles were found evaluating patient groups who had only acute low back problems of less than 3 months' duration. One study evaluated a mixed group of acute and chronic patients with pretreatment symptom durations ranging from 1 to 12 months. [191] Three articles evaluated patients with low back pain of over 3 months' duration. [192] - [194] One study did not specify symptom duration before treatment. [195]

Injections were made either into facet joints or into pericapsular areas around facet joints. The latter type of injection was also referred to as a "facet nerve block" when a local anesthetic was used. Medications injected included steroids, local anesthetics, and saline (either alone or in combination).

Three studies evaluated a combination of steroid and local anesthetic injected into either facet joints or pericapsular areas. [193]- [195] Three studies evaluated groups receiving facet joint injections in which steroid was compared with saline, [192] or local anesthetic was compared with saline, [191] or a combination of steroid and local anesthetic was compared with saline. [193]

None of the five studies that met review criteria found any significant differences between groups for patient-rated pain relief or global improvement scores during followup periods of up to 3 months after treatment. The only study with followup beyond 3 months found significantly greater improvement in pain and functional disability ratings at 6 months followup for the group receiving steroid facet injections compared with saline facet injections, but no significant differences between groups in number of patients who had sustained improvement over the entire 6-month followup period. [192]

Potential Harms and Costs

Some of the articles reviewed noted transient local pain at the injection sites. The risks of facet joint injections include potential infection, hemorrhage, neurologic damage, and chemical meningitis, [196], [197] as well as x-ray exposure from fluoroscopy. Facet injections are considered a moderate- to high-cost treatment.

Summary of Findings

No studies have adequately investigated the efficacy of facet injections for patients with acute low back problems. However, there were an adequate number of studies evaluating facet injections for chronic low back problems. [192]- [195] One study evaluated a mix of acute and chronic problems. [191] Neither the type of agent injected (steroid, local anesthetic, saline, or a combination of these) nor the location of the injection (intrafacet or pericapsular) made a significant difference in patient outcomes during the first 3 months after treatment or in the percentage of patients with sustained improvement over 6 months.

Based on limited research evidence, facet joint injections appear to be associated with rare potential serious complications and do not appear to be effective for treating acute low back problems.

Epidural Injections (Steroids, Lidocaine, Opioids)

Panel findings and recommendations:

  • There is no evidence to support the use of invasive epidural injections of steroids, local anesthetics, and/or opioids as a treatment for acute low back pain without radiculopathy. (Strength of Evidence = D.)
  • Epidural steroid injections are an option for short-term relief of radicular pain after failure of conservative treatment and as a means of avoiding surgery. (Strength of Evidence = C.)

Epidural injections for treating low back problems, done primarily in patients with suspected radiculopathy, involve the injection of medication (corticosteroids, local anesthetics, or narcotics) into the epidural space, near the site where the nerve roots pass before entering the intervertebral foramen. In theory, injecting medication into the epidural space allows a concentrated amount of medication to be deposited and retained in a specific area, exposing the nerves to the medication for a prolonged period of time. The therapeutic objective of epidural injections is to reduce swelling, inflammation, and pain.

There are various techniques for performing the epidural injection, some of which are more precise than others. [198] According to White, [199] placement of epidural needles is incorrect in 25 percent of the cases.

Literature Reviewed

Of 74 articles screened for this topic, 9 RCTs met criteria for review. [138], [200] - [207] Other articles contained information used by the panel, but did not meet article selection criteria. [147], [198], [199], [208], [209]

Evidence on Efficacy

Two studies evaluated patients with acute low back pain of less than 3 months' duration and also with radicular symptoms and findings suggesting nerve root dysfunction. [138], [202] Both studies compared groups receiving epidural injections of steroids combined with local anesthetic to groups receiving injections of local anesthetic alone, either into the epidural space [202] or into a tender spot over the sacrum. [138]

Cuckler, Bernini, Wiesel, et al. [202] found no significant differences in pain relief between groups immediately posttreatment or at long-term followup (mean of 20 months). Mathews, Mills, Jenkins, et al. [138] found no significant differences in pain relief between groups at 1, 6, or 12 months followup, but the epidural steroid group did have significantly better results at 3 months followup.

The remaining seven studies evaluated groups with either chronic low back problems or a mix of acute and chronic problems. [200], [201], [203] - [207] Medications used and locations injected varied. Four studies evaluated groups receiving epidural injections with various combinations of steroids, local anesthetics, and/or saline. [200], [201], [205], [207] Two studies evaluated groups receiving either epidural steroid injections or injections of saline into the interspinous ligament. [204], [206] One study evaluated groups receiving epidural injections with various combinations of steroids and morphine. [203]

The five studies that reported on short-term pain relief at 2 to 4 weeks followup showed conflicting results. For this time period, three studies reported significantly greater pain relief for the epidural steroid groups. [201], [204], [206] The other two studies found no differences in pain relief between groups. [205], [207]

Five studies reported on followup beyond 1 month. [200], [201], [204], [205], [207] Only one found significantly greater pain relief for the epidural steroid group. [200] The other studies found no significant differences in pain relief between groups. One study did find that a significantly higher percentage of the group receiving epidural steroid injections had returned to work at 3 months. [204] Three studies showed significantly better results within the first month for epidural steroids versus local anesthetic or saline injections, but not on longer followup. [201], [204], [206] No significant differences were reported between groups at 3 months [204] or at 1 year. [201] Ridley, Kingsley, Gibson, et al. [206] did not report followup beyond 2 weeks. Two other studies found no significant differences in pain relief between groups for any followup period. [205], [207] One study that evaluated epidural injections of morphine compared with (and/or in combination with) steroids found no significant differences in pain relief between groups on either short-term (within 1 month) or longer term followup. [203]

Potential Harms and Costs

Reported complications of epidural injections are described by Kepes and Duncalf. [208] The primary major complication reported was rare epidural abscess. Minor transient complications included headache, fever, and inadvertent spinal tap. Rocco, Frank, Kaul, et al. [209] reported several cases of life-threatening ventilatory depression in patients who received epidural injections of morphine and steroids combined. In 5 of the 19 times such injections were given, the patients experienced respiratory depression to the point of somnolence and had to receive naloxone for reversal of narcosis. Also posttreatment, the respiratory rates of patients receiving epidural morphine were lower than for patients receiving epidural steroids alone. The lowest respiratory rates were seen in those receiving injections of morphine combined with steroids. Mandell, Lipton, Bernstein, et al. [147] described headache as the most common side effect of epidural steroid injections (presumably resulting from pressure changes in the epidural space or accidental puncture of the dura) and listed aseptic meningitis, infection, and neurologic problems as other possible complications. Epidural injections are considered an expensive treatment.

Summary of Findings

Limited research evidence indicates that epidural injections using any type of medication lack proven efficacy for treating patients with acute low back pain without radiculopathy. Epidural injections are invasive and pose rare but serious potential risks. There was no evidence that epidural steroids are effective in treating acute radiculopathy, but the panel's opinion was that epidural steroid injections may be useful as an attempt to avoid surgery.

Acupuncture

Panel findings and recommendations:

  • Invasive needle acupuncture and other dry needling techniques are not recommended for treating patients with acute low back problems. (Strength of Evidence = D.)

Acupuncture is defined here to include all types of "dry needling" procedures (where no medication is injected) into cutaneous and subcutaneous tissues, muscles, or ligaments. Traditional acupuncture, based on Chinese philosophy, requires that needles be inserted into specific areas of the body (the prescribed Chinese meridians) and that these needles be rotated to produce a noxious stimulus. Other types of dry needling involve needle insertion without regard for the Chinese meridians into tender spots or other areas and may or may not involve the rotation of the needles. Some dry needling techniques also add electrical stimulation to the needles. The therapeutic objective of acupuncture and other dry needling techniques is to reduce pain.

Literature Reviewed

Of 24 articles screened for this topic, 8 reporting on 6 RCTs met criteria for review. [161], [162], [210] - [215] The panel also examined a meta-analysis. [216] Other articles contained information used by the panel, but did not meet article selection criteria. [217]- [220]

Evidence on Efficacy

All six RCTs evaluated patients with chronic back problems (with or without leg symptoms) of greater than 6 months' duration. Four of the articles reporting on three RCTs compared groups that received needling with groups that received no needling. [161], [162], [210], [213] Needling received was either acupuncture in traditional Chinese meridians [161], [162], [210] or needle insertion into tender muscle points. [213] In these studies, the groups that received some type of needling intervention had significantly better outcomes (in pain reduction and increased activity levels) than did the groups receiving no needling.

The remaining four articles reporting on three RCTs compared groups receiving acupuncture in the traditional Chinese meridians to groups receiving various types of needle insertion in other parts of the back. [211]- [215] None of these studies found any significant differences between groups in any outcomes measured.

A meta-analysis, based on 51 clinical studies on acupuncture used for various types of chronic pain (including back pain), found that the quality of even the better studies was mediocre and their results highly contradictory. [216] Specifically noted was that most of these studies did not provide an appropriate control group or were not adequately blinded. None of the studies demonstrated an advantage of needling in the appropriate Chinese meridians over misplaced needling. In this meta-analysis, the authors concluded that the efficacy of acupuncture for treatment of chronic pain remains doubtful.

Potential Harms and Costs

Reported complications of acupuncture include hematomas, infections (hepatitis B and Staphylococcus aureus), pneumothorax, and spinal nerve and spinal cord injuries due to buried needles migrating to the spinal cord. [217]- [220] In addition, the panel offered the opinion that needle insertion treatments involve some discomfort. Costs of acupuncture and other dry needling treatments vary depending on the number of treatment visits.

Summary of Findings

No studies were found evaluating efficacy of acupuncture in patients with acute low back problems. In three of the six RCTs evaluating efficacy for chronic low back problems, outcomes were better for the acupuncture group than for nontreatment control groups. All studies had methodologic flaws. Acupuncture was also found to have risks of significant complications.

Activity Modification

Activity Recommendations

Panel findings and recommendations:

  • Patients with acute low back problems may be more comfortable if they temporarily limit or avoid specific activities known to increase mechanical stress on the spine, especially prolonged unsupported sitting, heavy lifting, and bending or twisting the back while lifting. (Strength of Evidence = D.)
  • Activity recommendations for the employed patient with acute low back symptoms need to consider the patient's age and general health, and the physical demands of required job tasks. (Strength of Evidence = D.)

Patients with acute low back problems frequently seek advice from clinicians about the physical activities they can "safely" perform. Employed patients, or their employers, also often ask health care providers to recommend work restrictions that will allow the patient to remain on the job during an episode of acute low back symptoms. Activity modifications are aimed at allowing the patient with an acute low back problem to achieve a tolerable comfort level while continuing adequate physical activity to avoid debilitation. The overall goal is to aid recovery while disrupting daily activities as little as possible.

Literature Reviewed

Of the articles screened dealing with work and other activity modifications for patients with acute low back problems, none met established panel review criteria for adequate evidence about efficacy. However, eight articles were considered by the panel to contain useful information on these issues. [221]- [228]

Evidence on Efficacy

A number of epidemiological studies have looked at risk factors associated with developing acute low back problems. Although there is no clear consensus on the role of these factors, several studies have identified an increased incidence of low back problems among individuals whose work involves heavy or repetitive lifting, exposure to total body vibration (from vehicles or industrial machinery), asymmetric postures, and postures sustained for long periods of time. [222], [225]

Other biomechanical research suggests that certain postures and activities increase the mechanical stress on the spine. [221], [223], [225] It is not clear whether these mechanical stresses are the cause of low back problems. However, once symptoms are present, mechanical stresses correlate with worsening of symptoms. Prolonged sitting and postures that involve bending and twisting have been shown to increase the mechanical stress on the spine according to pressure measurements in lumbar intervertebral discs. Heavy lifting also appears to increase mechanical stress on the spine, but this stress can be reduced if the lifted object is held close to the body rather than at arm's length.

A lifting equation to calculate appropriate lifting limits for various tasks was part of a guideline developed in 1981 by the National Institute of Occupational Safety and Health [227] and revised more recently. [228] Unfortunately, the ability of the guideline to reduce the incidence of low back problems has yet to be directly validated. Other ergonomic guidelines for safe lifting have been reviewed by Dul and Hildebrandt. [224]

Summary of Findings

While scientific information is limited, the panel felt that activity modifications represented an important practical issue for the clinician. The panel's recommendations are based on their interpretation of the available scientific data. Patients with acute low back problems can be advised to limit temporarily any heavy lifting, prolonged sitting, and bending or twisting the back since these activities have been shown to increase mechanical stress on the spine.

In recommending activity modifications for patients who work, the clinician may find it helpful to obtain from the employer a description of the physical demands of required job tasks. The nature and duration of limitations will depend on the clinical status of the patient and the physical requirements of the job. Activity modifications must be time-limited, clear to both patient and employer, and reviewed by the clinician on a regular basis.

Several ergonomic guidelines on lifting and materials-handling tasks are available to help the clinician provide ranges of activity alterations at work. These guidelines are based on various biomechanical assumptions and theoretical equations to build a margin of safety for individuals who have to lift at work. It should be remembered that such guidelines were developed or otherwise healthy workers and are therefore of limited use in making strict recommendations. None of these guidelines has been adequately tested to see if adherence will reduce the occurrence of low back problems.

The panel recommends that clinicians help patients establish activity goals, in consultation with their employer when applicable. Such goals are particularly important for the small percentage of patients who are still not able to overcome activity intolerance after 1 to 2 months of symptoms. Since nonphysical factors, such as emotional distress or low work satisfaction, may also affect an individual's symptoms and response to treatment, activity goals can help keep attention focused on the expected return to full functional status and emphasize physical conditioning to improve activity tolerance.

Bed Rest

Panel findings and recommendations:

  • A gradual return to normal activities is more effective than prolonged bed rest for treating acute low back problems. (Strength of Evidence = B.)
  • Prolonged bed rest for more than 4 days may lead to debilitation and is not recommended for treating acute low back problems. (Strength of Evidence = B.)
  • The majority of low back patients will not require bed rest. Bed rest for 2 to 4 days may be an option for patients with severe initial symptoms of primarily leg pain. (Strength of Evidence = D.)

Bed rest is a frequently used treatment for acute low back pain. The therapeutic objective is to relieve symptoms by reducing intradiscal pressure and/or pressure on nerve roots. Studies have shown that intradiscal pressures are lowest when subjects are lying supine in the semi-Fowler position, on the back with hips and knees moderately flexed. [8]

Literature Reviewed

Of 12 articles screened for this topic, 5 reporting on 4 RCTs met criteria for review. [75], [85], [117], [229], [230] All these studies evaluated patients with acute low back problems. Other articles contained information used by the panel, but did not meet selection criteria. [8], [231], [232]

Evidence on Efficacy

Evidence is limited regarding efficacy of bed rest versus no treatment for patients with acute low back problems. One study involving military recruits compared forced bed rest to an alternative treatment of forced ambulation. [117] Although the bed rest group returned to full activity sooner, methodological problems with this study made interpretation difficult. Outcome assessments were not blinded, and patients in the hospitalized group were deprived of their peer-group activities, possibly confounding results. Two articles compared groups receiving either a recommendation for bed rest (of at least 4 days duration) or some other treatment (such as exercise, education, or manipulation) but no bed rest recommendation. [75], [85], [230] These two articles found no statistically significant differences between bed rest and other treatment modalities. Bed rest of more than 4 days and the resulting deactivation were worse for patients than a gradual return to normal levels of activity. Deyo, Diehl, and Rosenthal [229] compared two groups receiving recommendations for either 2 days or 7 days of bed rest. No differences were found between the groups in pain relief or in time to resumption of normal activities, except for earlier return to work in the 2-day group for those employed at baseline.

One problem with these studies is that the actual amount of bed rest reported by the subjects often differed greatly from the amount recommended. Deyo, Diehl, and Rosenthal [229] found that 74 percent of the 99 subjects assigned to the 7-day bed rest group reported fewer than 7 days of actual bed rest. The study reported by Evans, Gilbert, Taylor, et al. [75] and Gilbert, Taylor, Hildebrand, et al. [230] found that subjects who did not receive a bed rest recommendation also reported trying bed rest, but the duration was less than for the group receiving the recommendation.

Potential Harms and Costs

Potential physical side effects from prolonged bed rest are many, including muscle atrophy (1.0 to 1.5 percent of muscle mass lost per day), cardiopulmonary deconditioning (15-percent loss in aerobic capacity in 10 days), bone mineral loss with hypercalcemia and hypercalciuria, and the risk of thromboembolism. [232] There are also social side effects, such as perception of severe illness and economic loss due to increased time lost from work. [231]

Summary of Findings

There is no evidence to support the efficacy of bed rest compared with no treatment in patients with acute low back problems. Deactivation resulting from prolonged bed rest (more than 2 to 4 days) appears to be worse for patients than a gradual return to normal levels of activity.

Exercise

Panel recommendations and findings:

  • Low-stress aerobic exercise can prevent debilitation due to inactivity during the first month of symptoms and thereafter may help to return patients to the highest level of functioning appropriate to their circumstances. (Strength of Evidence = C.)
  • Aerobic (endurance) exercise programs, which minimally stress the back (walking, biking, or swimming), can be started during the first 2 weeks for most patients with acute low back problems. (Strength of Evidence = D.) Conditioning exercises for trunk muscles (especially back extensors), gradually increased, are helpful for patients with acute low back problems, especially if symptoms persist. During the first 2 weeks, these exercises may aggravate symptoms since they mechanically stress the back more than endurance exercises. (Strength of Evidence = C.)
  • Back-specific exercise machines provide no apparent benefit over traditional exercise in the treatment of patients with acute low back problems. (Strength of Evidence = D.)
  • Evidence does not support stretching of the back muscles in the treatment of patients with acute low back problems. (Strength of Evidence = D.)
  • Recommended exercise quotas that are gradually increased result in better outcomes than telling patients to stop exercising if pain occurs. (Strength of Evidence = C.)

Various types of exercise programs have been advocated for patients with low back problems. The most commonly studied types focus on back flexion, back extension, generalized strengthening, endurance (aerobic conditioning), stretching, or some combination of these. Authors also reported exercises for low back problems as dynamic (isotonic) and static (isometric). Most of these exercises can be either taught to the patient for home use or performed under supervision in a clinical setting. Commonly reported therapeutic objectives of exercise programs for low back problems are improvements in endurance, muscle strength, and flexibility presumably leading to reduced symptoms, improved level of functioning, and fewer or less severe future back problems.

Literature Reviewed

Of 92 articles screened, 20 RCTs met criteria for review. [74], [75], [81] , [83], [84], [86], [131], [155], [157], [233] - [243]

Other articles contained information used by the panel, but did not meet article selection criteria. [221], [226], [232], [244] - [253]

Only six of the articles reviewed involved studies of exercise as a treatment for patients with acute low back problems. [75], [83], [86], [131], [234], [243]

Two other studies evaluated the efficacy of exercises for preventing or reducing the impact of low back problems in workers whose jobs involved frequent lifting. [236], [237] The remaining articles all evaluated exercise as a treatment for groups that contained only patients with chronic pain or a mix of patients with acute and chronic problems. These were given less weight by the panel as there were enough studies using patients with acute low back problems.

Evidence on Efficacy

Of the six articles evaluating patients with acute low back problems, only one was considered well designed. [83] Swedish auto workers who had been off work for 6 weeks due to low back problems were randomized to either a control group with no recommendations for exercise or an exercise group with a program of gradually increased aerobic and back-strengthening exercises. At 1-year followup, patients in the exercise group had lost significantly less time from work due to back pain and had achieved a significantly higher level of fitness compared with the control group.

The other five articles dealing with acute low back problems included interventions that made the effect of exercise difficult to determine. [75], [86], [131], [234], [243]

Stankovic and Johnell [86] compared McKenzie extension exercises to a 45-minute educational session and found that the exercise group stopped medication use earlier and reported more pain relief and fewer days off work. Evans, Gilbert, Taylor, et al. [75] found that patients who received a flexion exercise program plus a 30-minute educational program stopped using medication sooner than did patients in bed rest and control groups. However, no differences were found between groups in reported degree of pain relief or activities of daily living.

The other three of these five studies showed no significant differences in outcomes between the treatment groups. [131], [234], [243]

Davies, Gibson, and Tester [234] compared groups receiving short-term diathermy and either extension or flexion exercises. Zylbergold and Piper [243] compared flexion exercises to manual therapy in combination with home back care instructions. Coxhead, Meade, Inskip, et al. [131] compared groups receiving various combinations of exercise (not otherwise specified), traction, manipulation, and lumbar corset use in a multifactorial study with 16 cells.

In summary, the six studies, which evaluated exercise for treating acute low back problems, used different forms of flexion or extension exercises, different treatment or control groups, different outcome measures, and different assessment periods. For this reason, no attempt was made to quantitatively combine these data.

As noted previously, two studies evaluated exercise for preventing acute or recurrent episodes of low back problems. Gundewall, Liljeqvist, and Hansson, [236] in a RCT, evaluated 60 nursing personnel working at a geriatric hospital. Subjects were randomized to receive either no intervention or a supervised exercise program during work six times per month for 13 months (emphasizing isometric and dynamic exercises strengthening the back extensor muscles).

At the end of the study, the exercise group had a significantly lower incidence of new low back problem episodes when compared with the control group (4 percent compared with 38 percent), fewer days lost from work, fewer days with back pain complaints, and a lower average duration of low back pain complaints. Trunk extensor strength measured with a spring gauge was not different between groups at the start of the study, but at the end of the study average trunk strength was significantly greater in the exercise group compared with the control group. The authors noted that the exercise group did receive more attention than the control group, which could account for some of the positive effect. Results were not reported separately for those with and without prior low back problems.

In the second study, Kellett, Kellett, and Nordholm, [237] in a RCT, evaluated 60 workers at a kitchen cabinet manufacturing company in Sweden. All were working at the start of the study and reported having either current or prior back pain. Subjects were randomly assigned to a control group or an exercise group. The exercise group was offered an exercise program at work once per week (30 minutes of aerobic movements of the arms, legs, and trunk followed by 10 minutes of relaxation) and were asked to do 30 minutes of aerobic exercise (such as walking, jogging, or cycling) on their own at least once per week.

Although subjects in the exercise group were encouraged to progressively increase their effort level during exercise, no direct measures of exertion (such as heart rate) were recorded. The exercise group was also given lectures about back problems and proper lifting techniques. There were no significant differences between exercise and control groups in incidence rates or days lost from work for episodes of back pain in the 1.5 years before the intervention. The incidence rate and days lost from work for episodes of back pain decreased in the exercise group during the subsequent 1.5-year intervention period. In the control group, absenteeism attributable to back pain increased during the intervention period. There were no significant differences, either before or after the study, between groups in cardiovascular fitness as measured by a suboptimal bicycle ergometer.

Deyo [232] remarked that, although there seems to be a consensus among experts that exercise plays a major role in the treatment of low back symptoms, most treatment programs prescribe a combination of exercises and there is little agreement on specific regimens. He also offered an opinion that additional benefits of aerobic exercise may include weight loss and favorable psychological effects, such as reduction of anxiety and depression. Other studies have shown that patients improve faster when given specific quotas of exercises to do rather than being told to stop exercise when it produces pain. [83], [246]

One study [251] found a back-specific exercise machine (the B- [200]) does not provide added benefit over traditional exercise in improving the objective back strength and flexibility (as measured by functional lifting capacity) of low back patients.

Potential Harms and Costs

Potential harms of exercise are usually not discussed. However, one RCT found that extension exercises caused increased symptoms in chronic low back pain patients. [238] Another study suggests that abdominal flexion (Williams flexion) exercises and stretching can increase mechanical stress on the spine as observed by intradiscal pressure measurements. [248]

Many methods have been proposed to evaluate mechanical stress on the back in different postures and activities. [221], [226], [244], [245], [247] - [250], [252] A biomechanical model by Schultz directly correlates with in vivo measurements of intradiscal pressure and myoelectric signals. [253] The measurements of relative stress on the spine during postures and activities generally relate to increased and decreased symptoms experienced by patients with back problems. Thus, this information can be used for recommendations about safety and altering activity. The costs of exercise programs can vary depending upon the setting. Those performed at home are inexpensive, whereas those done in supervised clinical settings are more costly. Exercise programs using back-specific computerized exercise machines can be very expensive. No studies meeting review criteria were found that provided evidence of any of these exercise settings being more effective than the others.

Summary of Findings

There are only a few RCTs that have evaluated exercise as a treatment for acute low back problems, and these are limited by small numbers of patients and inadequate descriptions of specific exercise regimens. The one well-designed RCT of patients limited for less than 3 months by low back symptoms found that a program of gradually increased aerobic and back-strengthening exercises was superior to doing no exercise at all. [83]

Exercise programs aimed at improving general endurance (aerobic fitness) and muscular strength (especially of the back and abdomen) have been shown in some published studies to benefit patients with acute low back problems. No evidence supports stretching as effective treatment for acute low back problems. The panel offered the opinion that patients with acute low back problems would benefit from exercise programs if endurance programs are started early, using exercises that cause minimal mechanical stress on the back; if patients are given set exercise quotas gradually increased with time; and if later strengthening programs are individualized based on the level of activity to which patients wish to return. The panel suggested that the early goal of exercise programs is to prevent debilitation due to inactivity and then to improve activity tolerance to return patients to their highest level of functioning as soon as possible.

PubReader format: click here to try

Views

  • PubReader
  • Print View
  • Cite this Page

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...