NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Government-University-Industry Research Roundtable (US); National Academy of Sciences (US); National Academy of Engineering (US); Institute of Medicine (US); Fox MA, editor. Pan-Organizational Summit on the US Science and Engineering Workforce: Meeting Summary. Washington (DC): National Academies Press (US); 2003.

Cover of Pan-Organizational Summit on the US Science and Engineering Workforce

Pan-Organizational Summit on the US Science and Engineering Workforce: Meeting Summary.

Show details

Position Paper on the U.S. Science and Engineering Workforce


Shirley M. Malcom, Director, Directorate for Education and Human Resources (EHR) Programs, American Association for the Advancement of Science (AAAS)


Founded in 1848, the American Association for the Advancement of Science (AAAS) is the world's largest federation of scientific and engineering societies, with over 270 affiliated organizations. AAAS members include more than 138,000 scientists, engineers, science educators, policymakers, and interested citizens.

AAAS seeks to “advance science and innovation throughout the world for the benefits of all people.” To fulfill this mission, the AAAS Board has set the following broad goals:

  • Foster communication among scientists, engineers, and the public
  • Enhance international cooperation in science and its applications
  • Promote the responsible conduct and use of science and technology
  • Foster education in science and technology for everyone
  • Enhance the science and technology workforce and infrastructure
  • Increase public understanding and appreciation of science and technology
  • Strengthen support for the science and technology enterprise

Although stated as a separate goal, building and maintaining a strong U.S. science and engineering (S&E) workforce is integral to all the other AAAS goals. Overall, these goals foster lifelong learning skills in research, technology, ethics, communications, and international collaborations. Through our weekly journal, Science, AAAS provides S&E professionals with cutting-edge knowledge and research findings.

Today the United States is the world leader in the global S&E enterprise, but other countries stand ready to challenge this economic strength. One of the main reasons is a shortage of U.S. workers to fill S&E positions. Technically skilled workers on H-1B visas (guest workers) are now making up for the U.S. worker shortfall. This supply of talent could dwindle in the near future as other nations take steps to increase their own S&E productivity. Add to this the following:

  • The percentage of white non-Hispanic men in the U.S. workforce is shrinking; this population group represents the majority of the current U.S. S&E workforce. Further educational and employment data indicate that women, African-Americans, Hispanic Americans, American Indians, and persons with disabilities provide an untapped reservoir of talent that could be used to fill S&E jobs (OSTP, 2000).
  • The S&E profession competes with other professions, such as law, medicine, and business, for the “best and the brightest” (Teitelbaum, M., 2001).
  • The S&E career path is not fully understood and is often filled with obstacles.

A well trained and supported science and technology workforce is essential to the continued vitality of the S&E enterprise and its contributions to society. To maintain the quality of that workforce over time requires sustained efforts at all levels, including attention to transition points along the educational and career continuum. Toward this end, AAAS focuses its efforts on high-quality preparation in science, mathematics, and technology (SMT), as well as recruitment and retention of students and professionals in S&E. Strategies include involving experts and stakeholders in the development of tools that guide educational policies, programs, and practices; development of S&E career resources; and evaluation and research on S&E human resources development.


From studies and policy forums with scientists, educators, policymakers, and students, AAAS staff members have identified factors, along the educational and career continuum, that facilitate or limit progression in S&E. Factors that facilitate progression include:

Factors that limit progression into S&E careers include:

  • K-12 educational policies, practices, and allocation of funds that hinder implementation of high-quality K-12 SMT standards, as well as selection of high-quality curriculum and assessment materials
  • College admissions criteria that do not take into account all assets of applicants (Orfield and Kurlaender, 2001)
  • The poor quality of science and mathematics education in many teacher preparation programs (National Center for Education and Statistics)
  • High school SMT teaching that often lacks rigor and mentoring toward S&E careers
  • College and university SMT teaching that often does not take into account the learning styles of students, as well as a lack of faculty mentoring toward S&E doctoral careers
  • Community college SMT curricula that may not be aligned with curricula in bachelor of science degree-granting institutions
  • Undergraduate SMT curricula that may not have the depth and breadth to prepare students for success in S&E doctoral programs
  • College and university departmental policies, practices, and cultures that may slow degree completion or affect the retention of all students (especially underrepresented groups) in S&E, particularly for those in pursuit of doctorate degrees and participation in the professoriate (George, Yolanda, et al., 2001)
  • Institutional policies and practices related to S&E postdoc status, including classifications, compensation, career and professional development, and duration of postdocs (AAU, 1998).


Given lessons learned about education and training, as well as knowledge about existing programs to develop and sustain a strong U.S. S&E workforce, AAAS urges all decision makers to coordinate and leverage resources to make sustainable changes in both the S&E workforce preparation and environments in which preparation and work take place. Efforts to make any sustainable changes must take into account the complex social, economic, and political forces that have combined in the past to discourage groups such as women, African-Americans, Hispanic Americans, American Indians, and persons with disabilities from pursuing S&E careers.

Specifically, AAAS urges policymakers, government agencies, businesses, educational institutions, labor unions, and professional societies to work collaboratively to support the following:

  • An increase in attention, resources, and accountability related to S&E career development in existing SMT educational reform programs. Many initiatives are already in place to bring about structural reforms in educational institutions that prepare and train the S&E workforce, including reforms related to pre-college, undergraduate, and graduate education, as well as postdoc training and the professoriate. As a part of these reform efforts, greater attention and increased resources must be given to career mentoring and transitions along the S&E education and career continuum, including providing career resources and high school and undergraduate research experiences.
  • Research on S&E workforce development. While there is a thrust on research on teaching and learning, less attention is being paid to research on S&E workforce development. In particular, we need to better understand how to identify, attract, mentor, and retain talent and produce leaders in S&E (AAU, 1998). In addition, we urge increased federal support for the National Science Foundation to continue to provide educational and employment S&E indicators that are disaggregated by race/ ethnicity and gender and disability, so critical to monitoring the state of the S&E workforce.
  • Talent development in all S&E disciplines. Due to the integration of research and education in our higher-education institutions, as well as the interdisciplinary nature of research, it is important for the federal research budget to support balanced increases in all the sciences. New inventions and innovations in health, defense, and technology, as well as in other areas, are codependent on talent development in all the sciences, including biology, chemistry, physics, mathematics, and engineering.


  1. AAAS Science and Technology Policy Yearbook. Washington, DC: American Association for the Advancement of Science; 2002.
  2. The Association of American Universities, Committee on Postdoctoral Education, Reports and Recommendations. 1998. Available online:
  3. Adelman C. Washington, DC: U.S. Department of Education, Office of Educational Research and Improvement; 1999. Answers in the tool box: Academic intensity, attendance patterns, and bachelor's degree attainment.
  4. Campbell George Jr, Denes R, Morrison C., editors. New York: Oxford University Press; 2000. Access denied: Race, ethnicity, and the scientific enterprise.
  5. Commission on the Advancement of Women and Minorities in Science, Engineering and Technology Development. Arlington, Va.: National Science Foundation; 2000. Land of plenty: Diversity as America's competitive edge in science, engineering and technology.
  6. George YS, Neale D, Van Horne V, Malcom SM. Washington, DC: American Association for the Advancement of Science; 2001. In pursuit of a diverse science, technology, engineering, and mathematics workforce: Recommended research priorities to enhance participation by underrepresented minorities.
    New career paths for students with disabilities: Opportunities in science, technology, engineering, and mathematics. Washington, DC: American Association for the Advancement of Science; 2002.
  7. Teitelbaum M. How we (unintentionally) make science careers unattractive. In: Chubin Daryl, Pearson Willie., editors. Scientists and engineers for the new millennium: Renewing the human resource. Washington, DC: Commission on Professionals in Science and Technology; 2001.
    Chubin DE. Who is doing science—and who will? In: Teich A, Nelson Stephen D, Lita Stephen J, editors. 2002.
  8. National Center for Education and Statistics. Contexts for elementary and secondary education: International comparison of teacher preparation in 8th grade mathematics and science. Available online:
  9. Rapoport AI. Does the educational debt burden of science and engineering doctorates differ by race/ethnicity and sex? National Science Foundation. Apr 16, 1999. Available online:
  10. U.S. Office of Science and Technology Policy; National Science and Technology Council. Washington, DC: 2000. Ensuring a strong U.S. scientific, technical, and engineering workforce in the 21st century.
  11. Orfield G, Kurlaender M. Cambridge, MA: The Harvard Education Publishing Group; 2001. Diversity challenged.
Copyright © 2003, National Academy of Sciences.
Bookshelf ID: NBK36377
PubReader format: click here to try


  • PubReader
  • Print View
  • Cite this Page
  • PDF version of this title (13M)

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...