• We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Cover of The Human ATP-Binding Cassette (ABC) Transporter Superfamily

The Human ATP-Binding Cassette (ABC) Transporter Superfamily

.

Author Information

*.

Human Genetics Section, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD
*Correspondence to: Dr. Michael Dean, Bldg. 560, Room 21-18, NCI-Frederick, Frederick, MD 21702, USA. Telephone 301-846-5931. Fax 301-846-1909. vog.frcficn@naed

Excerpt

The ATP-binding cassette (ABC) transporter superfamily contains membrane proteins that translocate a wide variety of substrates across extra- and intracellular membranes, including metabolic products, lipids and sterols, and drugs. Overexpression of certain ABC transporters occurs in cancer cell lines and tumors that are multidrug resistant. Genetic variation in these genes is the cause or contributor to a wide variety of human disorders with Mendelian and complex inheritance including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response phenotypes. Conservation of the ATP-binding domains of these genes has allowed the identification of new members of the superfamily based on nucleotide and protein sequence homology. Phylogenetic analysis places the 48 known human ABC transporters into seven distinct subfamilies of proteins. For each gene, the precise map location on human chromosomes, expression data, and localization within the superfamily have been determined. These data allow predictions to be made as to potential function(s) or disease phenotype(s) associated with each protein. Comparison of the human ABC superfamily to that of other sequenced eukaryotes including Drosophila indicated that there is a rapid rate of birth and death of ABC genes and that most members carry out highly specific functions that are not conserved across distantly related phyla.

Bookshelf ID: NBK3
PubReader format: click here to try

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...