NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Alberts B, Bray D, Lewis J, et al. Molecular Biology of the Cell. 3rd edition. New York: Garland Science; 1994.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Molecular Biology of the Cell

Molecular Biology of the Cell. 3rd edition.

Show details

Chapter 15References


    1. Barritt, G.J. Communication Within Animal Cells. Oxford, UK: Oxford Science Publications, 1992.
    2. Baulieu, E.-E.; Kelly, P.A. Hormones: From Molecules to Disease. London: Chapman and Hall, 1990.
    3. Hardie, D.G. Biochemical Messengers: Hormones, Neurotransmitters and Growth Factors. London: Chapman and Hall, 1990.
    4. Molecular Biology of Signal Transduction. Cold Spring Harb. Symp. Quant. Biol. 1988;Vol. 53 [PubMed: 3254771]
    5. Morgan, N.G. Cell Signalling. Milton Keynes, UK: Open University Press, 1989.


    Errede, B.; Levin, D.E. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 1993;5:254–260. [PubMed: 8389568]
  1. Kurjan, J. Pheromone response in yeast. Annu. Rev. Biochem. 1992;61:1097–1129. [PubMed: 1323233]
  2. Marsh, I.; Neimsen, A.M.; Herskowitz, I. Signal transduction during pheromone response in yeast. Annu. Rev. Cell Biol. 1991;7:699–728. [PubMed: 1667085]
  3. 2.
    Hardie, D.G. Biochemical Messengers: Hormones, Neurotransmitters and Growth Factors. London: Chapman and Hall, 1990.
  4. Kahn, C.R. Membrane receptors for hormones and neurotransmitters. J. Cell Biol. 1976;70:261–286. [PMC free article: PMC2109819] [PubMed: 7569]
  5. Levitski, A. Receptors: A Quantitative Approach. Menlo Park, CA: Benjamin-Cummings, 1984.
  6. Snyder, S.H. The molecular basis of communication between cells. Sci. Am. 1985;253(4):132–140. [PubMed: 2866584]
  7. 3.
    Gurdon, J.; Tiller, E.; Roberts, J.; Kato, K. A community effect in muscle development. Curr. Biol. 1993;3:1–11. [PubMed: 15335872]
  8. Smith, W.L.; Borgeat, P. The eicosanoids: prostaglandins, thromboxanes, leukotrienes, and hydroxyeico-saenoic acids. In Biochemistry of Lipids and Membranes (D.E. Vance, J.E. Vance, eds.), pp. 325-360. Menlo Park, CA: Benjamin-Cummings, 1985.
  9. Weissmann, G. Aspirin. Sci. Am. 1991;264(1):84–90. [PubMed: 1899486]
  10. 4.
    Caveney, S. The role of gap junctions in development. Annu. Rev. Physiol. 1985;47:319–335. [PubMed: 3888077]
  11. Warner, A.E. The role of gap junctions in amphibian development. J. Embryol. Exp. Morphol. Suppl. 1985;89:365–380. [PubMed: 3831220]
  12. 5.
    Raff, M.C. Social controls on cell survival and cell death. Nature. 1992;356:397–400. [PubMed: 1557121]
    Schimke, R.T. On the roles of synthesis and degradation in regulation of enzyme levels in mammalian tissues. Curr. Top. Cell Regul. 1969;1:77–124.
    Bredt, D.S.; Snyder, S.H. Nitric oxide, a novel neuronal messenger. Neuron. 1992;8:3–11. [PubMed: 1370373]
  13. Lowenstein, C.J.; Snyder, S.H. Nitric oxide, a novel biological messenger. Cell. 1992;70:705–707. [PubMed: 1381285]
  14. Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 1991;43:109–142. [PubMed: 1852778]
  15. Stevens, C.F. Just say NO. Curr. Biol. 1992;2:108–109. [PubMed: 15336010]
  16. 8.
    Andres, A.J.; Thummel, C.S. Hormones, puffs and flies: the molecular control of metamorphosis by ecdy-sone. Trends Genet. 1992;8:132–138. [PubMed: 1631956]
  17. Ashburner, M.; Chihara, C.; Meltzer, P.; Richards, G. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb. Symp. Quant. Biol. 1974;38:655–662. [PubMed: 4208797]
  18. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–895. [PubMed: 3283939]
  19. Parker, M.G., ed. Nuclear Hormone Receptors: Molecular Mechanisms, Cellular Functions and Clinical Abnormalities. London: Academic Press, 1991.
  20. Yamamoto, K.R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 1985;19:209–252. [PubMed: 3909942]
  21. 9.
    Nishizuka, Y., ed. Signal transduction: crosstalk. Trends Biochem. Sci. 1992;17:367–443. [PubMed: 1455503]
    Bourne, H.R.; Nicoll, R. Molecular machines integrate coincident synaptic signals. Cell/Neuron. 1993;72/10:65–75. [PubMed: 8094038]
  22. Cohen, P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem. Sci. 1992;17:408–413. [PubMed: 1333658]
  23. Pelech, S.L. Networking with protein kinases. Curr. Biol. 1993;3:513–515. [PubMed: 15335690]
  24. Posada, J.; Cooper, J.A. Molecular signal integration. Interplay between serine, threonine, and tyrosine phosphorylation. Mol. Biol. Cell. 1992;3:583–592. [PMC free article: PMC275614] [PubMed: 1498367]
  25. 11.
    Birnbaumer, L. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 1990;30:675–705. [PubMed: 2111655]
  26. Dohlman, H.G.; Thorner, J.; Caron, M.G.; Lefkowitz, R.J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 1991;60:653–688. [PubMed: 1652922]
  27. Houslay, M.D.; Milligan, G., eds. G-Proteins as Mediators of Cellular Signalling Processes. Chichester, UK: Wiley, 1990.
  28. Linder, M.E.; Gilman, A.G. G proteins. Sci. Am. 1992;267(1):36–43.
  29. 12.
    Bourne, H.R.; Sanders, D.A.; McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117–127. [PubMed: 1898771]
  30. Hepler, J.R.; Gilman, A.G. G proteins. Trends Biochem. Sci. 1992;17:383–387. [PubMed: 1455506]
  31. 13.
    Feder, D. Reconstitution of beta1 -adrenoceptor-dependent adenylate cyclase from purified components. EMBO J. 1986;5:1509–1514. [PMC free article: PMC1166973] [PubMed: 3017696]
  32. Gilman, A.G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 1987;56:615–649. [PubMed: 3113327]
  33. Pastan, I. Cyclic AMP. Sci. Am. 1972;227(2):97–105. [PubMed: 4339778]
  34. Schramm, M.; Selinger, Z. Message transmission: receptor controlled adenylate cyclase system. Science. 1984;225:1350–1356. [PubMed: 6147897]
  35. Sutherland, E.W. Studies on the mechanism of hormone action. Science. 1972;177:401–408. [PubMed: 4339614]
  36. Tang, W.-J.; Gilman, A.G. Adenylyl cyclases. Cell. 1992;70:869–872. [PubMed: 1525824]
  37. 14.
    Lai, C.-Y. The chemistry and biology of cholera toxin. CRC Crit. Rev. Biochem. 1980;9:171–206. [PubMed: 6256124]
    Birnbaumer, L. Receptor-to-effector signaling through G proteins: roles for β-γ dimers as well as α subunits. Cell. 1992;71:1069–1072. [PubMed: 1335363]
  38. Iniguez-Lluhi, J.; Kleuss, C.; Gilman, A.G. The importance of G-protein β-γ subunits. Trends Cell Biol. 1993;3:230–235. [PubMed: 14731758]
  39. 16.
    Brindle, P.K.; Montminy, M.R. The CREB family of transcription activators. Curr. Opin. Gen. Dev. 1992;2:199–204. [PubMed: 1386267]
  40. Cohen, P. Protein phosphorylation and the control of glycogen metabolism in skeletal muscle. Philos. Trans. R. Soc. Lond. (Biol.) 1983;302:13–25. [PMC free article: PMC126065] [PubMed: 6137000]
  41. Krebs, E.G. Role of the cyclic AMP-dependent protein kinase in signal transduction. JAMA. 1989;262:1815–1818. [PubMed: 2550680]
  42. Pilkis, S.J.; El-Maghrabi, M.R.; Claus, T.H. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Biochem. 1988;57:755–784. [PubMed: 3052289]
  43. Taylor, S.S.; Buechler, J.A.; Yonemoto, W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu. Rev. Biochem. 1990;59:971–1005. [PubMed: 2165385]
  44. 17.
    Cohen, P. Structure and regulation of protein phosphatases. Annu. Rev. Biochem. 1989;58:453–508. [PubMed: 2549856]
    Carafoli, E. Intracellular calcium homeostasis. Annu. Rev. Biochem. 1987;56:395–433. [PubMed: 3304139]
  45. Evered, D.; Whelan, J., eds. Calcium and the Cell, Ciba Foundation Symposium 122. Chichester, UK: Wiley, 1986.
  46. Koch, G.L.E. The endoplasmic reticulum and calcium storage. Bioessays. 1990;12:527–531. [PubMed: 2085319]
  47. 19.
    Augustine, G.J.; Charlton, M.P.; Smith, S.J. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci. 1987;10:633–693. [PubMed: 2436546]
  48. Heilbrunn, L.V.; Wiercenski, F.J. The action of various cations on muscle protoplasm. J. Cell. Comp. Physiol. 1947;29:15–32. [PubMed: 20285919]
  49. 20.
    Bansal, V.S.; Majerus, P.W. Phosphatidylinositol-derived precursors and signals. Annu. Rev. Cell Biol. 1990;6:41–67. [PubMed: 2275819]
  50. Harden, T.K. G-protein-regulated phospholipase C: identification of component proteins. Adv. Second Messenger Phosphoprotein Res. 1992;26:11–34. [PubMed: 1329891]
  51. Majerus, P.W. Inositol phosphate biochemistry. Annu. Rev. Biochem. 1992;61:225–250. [PubMed: 1323235]
  52. Michell, R.H. Inositol lipids in cellular signalling mechanisms. Trends Biochem. Sci. 1992;17:274–276. [PubMed: 1412699]
  53. Sekar, M.C.; Hokin, L.E. The role of phosphoinositides in signal transduction. J. Membr. Biol. 1986;89:193–210. [PubMed: 3009821]
  54. 21.
    Berridge, M.J. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–325. [PubMed: 8381210]
  55. Ferris, C.D.; Snyder, S.H. Inositol 1,4,5-trisphosphate-activated calcium channels. Annu. Rev. Physiol. 1992;54:469–488. [PubMed: 1314042]
  56. Meldolesi, J. Multifarious IP3 receptors. Curr. Biol. 1992;2:393–394. [PubMed: 15335935]
  57. Taylor, C.W.; Marshall, I.C.B. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem. Sci. 1992;17:403–407. [PubMed: 1333657]
  58. 22.
    Berridge, M.J. Inositol triphosphate and calcium oscillations. Adv. Second Messenger Phosphoprotein Res. 1992;26:211–223. [PubMed: 1419358]
  59. Cobbold, P.H.; Cuthbertson, K.S. Calcium oscillations: phenomena, mechanisms and significance. Semin. Cell Biol. 1990;1:311–321. [PubMed: 2103516]
  60. Meyer, T.; Stryer, L. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 1991;20:153–174. [PubMed: 1867714]
  61. Tsien, R.W.; Tsien, R.Y. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 1990;6:715–760. [PubMed: 2177344]
  62. Tsunoda, Y. Oscillatory Ca2+ signaling and its cellular function. New Biol. 1991;3:3–17. [PubMed: 1903986]
  63. 23.
    Asaoka, Y.; Nakamura, S.-I.; Yoshida, K.; Nishizuka, Y. Protein kinase C, calcium and phospholipid degradation. Trends Biochem. Sci. 1992;17:414–417. [PubMed: 1455509]
  64. Hunter, T.; Karin, M. The regulation of transcription by phosphorylation. Cell. 1992;70:375–387. [PubMed: 1643656]
  65. Liou, H.-C.; Baltimore, D. Regulation of the NF-kB/rel transcription factor and IkB inhibitor system. Curr. Opin. Cell Biol. 1993;5:477–487. [PubMed: 8352966]
  66. Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992;258:607–614. [PubMed: 1411571]
  67. Sternweis, P.C.; Smrcka, A.V. Regulation of phospholipase C by G proteins. Trends Biochem. Sci. 1992;17:502–506. [PubMed: 1335185]
  68. 24.
    Gerday, C.; Bolis, L.; Gilles, R., eds. Calcium and Calcium Binding Proteins. Berlin: Springer-Verlag, 1988.
  69. Head, J.F. A better grip on calmodulin. Curr. Biol. 1992;2:609–611. [PubMed: 15336037]
  70. O'Neil, K.T.; DeGrado, W.F. How calmodulin binds its targets: sequence independent recognition of amphipathic α-helices. Trends Biochem. Sci. 1990;15:59–64. [PubMed: 2186516]
  71. 25.
    Hanson, P.I.; Schulman, H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu. Rev. Biochem. 1992;61:559–601. [PubMed: 1323238]
  72. Morris, R.G.M.; Kennedy, M.B. The pierian spring. Curr. Biol. 1992;2:511–514. [PubMed: 15336041]
  73. Schulman, H. The multifunctional Ca2+/calmodulin-dependent protein kinases. Curr. Opin. Cell Biol. 1993;5:247–253. [PubMed: 8507497]
  74. 26.
    Cohen, P. Protein phosphorylation and hormone action. Proc. R. Soc. Lond. (Biol.) 1988;234:115–144. [PMC free article: PMC113134] [PubMed: 2905457]
    Brown, A.M.; Birnbaumer, L. Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol. 1990;52:197–213. [PubMed: 1691904]
  75. Hille, B. G protein-coupled mechanisms and nervous signaling. Neuron. 1992;9:187–195. [PubMed: 1353972]
  76. 28.
    Buck, L.B. The olfactory multigene family. Curr. Opin. Neurobiol. 1992;2:282–288. [PubMed: 1643410]
  77. Kaupp, U.B.; Koch, K.W. Role of cGMP and Ca2+ in vertebrate photoreceptor excitation and adaptation. Annu. Rev. Physiol. 1992;54:153–176. [PubMed: 1314038]
  78. Lagnado, L.; Baylor, D. Signal flow in visual transduction. Neuron. 1992;8:995–1002. [PubMed: 1377000]
  79. Reed, R.R. How does the nose know? Cell. 1990;60:1–2. [PubMed: 2104777]
  80. Simon, M.I.; Strathmann, M.P.; Gautam, N. Diversity of G proteins in signal transduction. Science. 1991;252:802–808. [PubMed: 1902986]
  81. Stryer, L. Visual excitation and recovery. J. Biol. Chem. 1991;266:10711–10714. [PubMed: 1710212]
  82. 29.
    Lamb, T.D.; Pugh, E.N., Jr. G-protein cascades: gain and kinetics. Trends Neurosci. 1992;15:291–298. [PubMed: 1384198]
    Lewis, J.; Slack, J.; Wolpert, L. Thresholds in development. J. Theor. Biol. 1977;65:579–590. [PubMed: 859349]
  83. Mulvihill, E.R.; Palmiter, R.D. Relationship of nuclear estrogen receptor levels to induction of ovalbumin and conalbumin mRNA in chick oviduct. J. Biol. Chem. 1977;252:2060–2068. [PubMed: 845159]
  84. 31.
    Maack, T. Receptors of atrial natriuretic factor. Annu. Rev. Physiol. 1992;54:11–27. [PubMed: 1532887]
  85. Miller, S.G.; Kennedy, M.B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986;44:861–870. [PubMed: 3006921]
  86. Mohun, T. Muscle differentiation. Curr. Opin. Cell Biol. 1992;4:923–928. [PubMed: 1485959]
  87. Rosenzweig, A.; Seidman, C.E. Atrial natriuretic factor and related peptide hormones. Annu. Rev. Biochem. 1991;60:229–256. [PubMed: 1652921]
  88. Yuen, P.S.T.; Garbers, D.L. Guanylyl cyclase-linked receptors. Annu. Rev. Neurosci. 1992;15:193–225. [PubMed: 1349465]
  89. 32.
    Carpenter, G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem. 1987;56:881–914. [PubMed: 3039909]
  90. Fantl, W.J.; Johnson, D.E.; Williams, L.T. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 1993;62:453–481. [PubMed: 7688944]
  91. Schlessinger, J.; Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992;9:383–391. [PubMed: 1326293]
  92. Ullrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–212. [PubMed: 2158859]
  93. 33.
    Clark, S.G.; Stern, M.J.; Horvitz, H.R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature. 1992;356:340–344. [PubMed: 1372395]
  94. Koch, C.A.; Anderson, D.; Moran, M.F.; Ellis, C.; Pawson, T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991;252:668–674. [PubMed: 1708916]
  95. Mayer, B.J.; Baltimore, D. Signalling through SH2 and SH3 domains. Trends Cell Biol. 1993;3:8–13. [PubMed: 14731533]
  96. Pawson, T.; Schlessinger, J. SH2 and SH3 domains. Curr. Biol. 1993;3:434–442. [PubMed: 15335710]
  97. 34.
    Bollag, G.; McCormick, F. Regulators and effectors of ras proteins. Annu. Rev. Cell Biol. 1991;7:601–632. [PubMed: 1667084]
  98. Downward, J. Ras regulation: putting back the GTP. Curr. Biol. 1992;2:329–331. [PubMed: 15335949]
  99. Hall, A. Ras-related proteins. Curr. Opin. Cell Biol. 1993;5:265–268. [PubMed: 8389569]
  100. Lowy, D.R.; Willumsen, B.M. Function and regulation of Ras. Annu. Rev. Biochem. 1993;62:851–891. [PubMed: 8352603]
  101. 35.
    Greenwald, I.; Rubin, G.M. Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell. 1992;68:271–281. [PubMed: 1365402]
  102. Olivier, J.P. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell. 1993;73:179–191. [PubMed: 8462098]
  103. Ready, D.F. A multifaceted approach to neural development. Trends Neurosci. 1989;12:102–110. [PubMed: 2469216]
  104. Simon, M.A.; Dodson, G.S.; Rubin, G.M. An SH3-SH2-SH3 protein is required for p21 Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell. 1993;73:169–177. [PubMed: 8462097]
  105. Tomlinson, A. Cellular interactions in the developing Drosophila eye. Development. 1988;104:183–193. [PubMed: 3076112]
  106. Warne, P.H.; Viciana, P.R.; Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature. 1993;364:352–355. [PubMed: 8332195]
  107. 36.
    Hill, C.S., et al. Functional analysis of a growth factor-responsive transcription factor complex. Cell. 1993;73:395–406. [PubMed: 8477450]
  108. Nishida, E.; Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem. Sci. 1993;18:128–130. [PubMed: 8388132]
  109. Pelech, S.L. Networking with protein kinases. Curr. Biol. 1993;3:513–515. [PubMed: 15335690]
  110. Ruderman, J.V. MAP kinase and the activation of quiescent cells. Curr. Opin. Cell Biol. 1993;5:207–213. [PubMed: 8389566]
  111. Thomas, G. MAP kinase by any other name smells just as sweet. Cell. 1992;68:3–6. [PubMed: 1310074]
  112. 37.
    Argetsinger, L.S. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993;74:237–244. [PubMed: 8343952]
  113. Miyajima, A.; Hara, T.; Kitamura, T. Common subunits of cytokine receptors and the functional redundancy of cytokines. Trends Biochem. Sci. 1992;17:378–382. [PubMed: 1455505]
  114. Mustelin, T.; Burn, P. Regulation of src family tyrosine kinases in lymphocytes. Trends Biochem. Sci. 1993;18:215–220. [PubMed: 7688486]
  115. Schreurs, J.; Gorman, D.M.; Miyajima, A. Cytokine receptors: a new superfamily of receptors. Int. Rev. Cytol. 1993;137B:121–155. [PubMed: 1336004]
  116. Stahl, N.; Yancopoulos, G.D. The αs, βs, and kinases of cytokine receptor complexes. Cell. 1993;74:587–590. [PubMed: 8395346]
  117. 38.
    Charbonneau, H.; Tonks, N.K. 1002 protein phosphatases? Annu. Rev. Cell Biol. 1992;8:463–493. [PubMed: 1335746]
  118. Koretzky, G.A. Role of the CD45 tyrosine phosphatase in signal transduction in the immune system. FASEB J. 1993;7:420–426. [PubMed: 8462784]
  119. Walton, K.M.; Dixon, J.E. Protein tyrosine phosphatases. Annu. Rev. Biochem. 1993;62:101–120. [PubMed: 8352585]
  120. 39.
    Bishop, J.M. Molecular themes in oncogenes. Cell. 1991;64:235–248. [PubMed: 1988146]
  121. Gupta, S.K.; Gallego, C.; Johnson, G.L. Mitogenic pathways regulated by G protein oncogenes. Mol. Biol. Cell. 1992;3:123–128. [PMC free article: PMC275508] [PubMed: 1550954]
  122. Kahn, P.; Graf, T., eds. Oncogenes and Growth Control. Berlin: Springer, 1986.
  123. 40.
    Lin, H.Y.; Lodish, H.F. Receptors for the TGF-β superfamily: multiple polypeptides and serine/threonine kinases. Trends Cell Biol. 1993;3:14–19. [PubMed: 14731534]
  124. Massague, J. The transforming growth factor-b family. Annu. Rev. Cell Biol. 1990;6:597–641. [PubMed: 2177343]
  125. Massague, J. Receptors for the TGF-β family. Cell. 1992;69:1067–1070. [PubMed: 1319842]
  126. Taylor, S.S. et al. Structural framework for the protein kinase family. Annu. Rev. Cell Biol. 1992;8:429–462. [PubMed: 1335745]
  127. 41.
    Artavanis-Tsakonas, S.; Delidakis, C.; Fehon, R.G. The Notch locus and the cell biology of neuroblast segregation. Annu. Rev. Cell Biol. 1991;7:427–452. [PubMed: 1809352]
  128. Burridge, K.; Petch, L.A.; Romer, L.H. Signals from focal adhesions. Curr. Biol. 1992;2:537–539. [PubMed: 15336048]
  129. 42.
    Soderquist, A.M.; Carpenter, G. Biosynthesis and metabolic degradation of receptors for epidermal growth factor. J. Membr. Biol. 1986;90:97–105. [PubMed: 3014153]
    Hausdorff, W.P.; Caron, M.G.; Lefkowitz, R.J. Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J. 1990;4:2881–2889. [PubMed: 2165947]
  130. Lefkowitz, R.J. G-protein-coupled receptor kinases. Cell. 1993;74:409–412. [PubMed: 8394218]
  131. Palczewski, K.; Benovic, J.L. G-protein-coupled receptor kinases. Trends Biochem. Sci. 1991;16:387–391. [PubMed: 1664548]
  132. 44.
    Cole, G.M.; Reed, S.I. Pheromone-induced phosphorylation of a G protein β subunit in S. cerevisiae is associated with an adaptive response to mating pheromone. Cell. 1991;64:703–716. [PubMed: 1900039]
  133. Nestler, E.J. Molecular mechanisms of drug addiction. J. Neurosci. 1992;12:2439–2450. [PubMed: 1319476]
  134. 45.
    Adler, J. The sensing of chemicals by bacteria. Sci. Am. 1976;234(4):40–47. [PubMed: 769155]
  135. Berg, H. How bacteria swim. Sci. Am. 1975;233(2):36–44. [PubMed: 1145173]
  136. Koshland, D.E., Jr. Biochemistry of sensing and adaptation in a simple bacterial system. Annu. Rev. Biochem. 1981;50:765–782. [PubMed: 6791579]
  137. 46.
    Bourret, R.B.; Borkovich, K.A.; Simon, M.I. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 1991;60:401–441. [PubMed: 1883200]
  138. Hazelbauer, G.L. Bacterial chemoreceptors. Curr. Opin. Struct. Biol. 1992;2:505–510.
  139. Parkinson, J.S. Signal transduction schemes of bacteria. Cell. 1993;73:857–871. [PubMed: 8098993]
  140. Stock, J.B.; Lukat, G.S.; Stock, A.M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 1991;20:109–136. [PubMed: 1867712]
  141. Stoddard, B.L.; Bui, J.D.; Koshland, D.E., Jr. Structure and dynamics of transmembrane signaling by the Escherichia coli aspartate receptor. Biochemistry. 1992;31:11978–11983. [PubMed: 1457398]
  142. 47.
    Hinton, G.E. How neural networks learn from experience. Sci. Am. 1992;267(3):144–151. [PubMed: 1502516]
  143. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. 1982;79:2554–2558. [PMC free article: PMC346238] [PubMed: 6953413]
  144. Sejnowski, T.J.; Rosenberg, C.R. Parallel networks that learn to pronounce English text. Complex Systems. 1987;1:145–168.
  145. 48.
    Bray, D. Intracellular signalling as a parallel distributed process. J. Theor. Biol. 1990;143:215–231. [PubMed: 2385105]
  146. Pelech, S.L. Networking with protein kinases. Curr. Biol. 1993;3:513–515. [PubMed: 15335690]
  147. 49.
    Gatmaitan, Z. et al. Regulation of growth and differentiation of a rat hepatoma cell line by the synergistic interactions of hormones and collagenous substrata. J. Cell Biol. 1983;97:1179–1190. [PMC free article: PMC2112632] [PubMed: 6137487]
  148. Nishizuka, Y. Signal transduction crosstalk. Trends Biochem. Sci. 1992;17:367–374. [PubMed: 1455503]
  149. Rozengurt, E.; Mendoza, S.A. Synergistic signals in mitogenesis: role of ion fluxes, cyclic nucleotides and protein kinase in Swiss 3T3 cells. J. Cell Sci. Suppl. 1985;3:229–242. [PubMed: 3011824]

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 1994, Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D Watson.
Bookshelf ID: NBK28333


  • Cite this Page

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...