NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Basic Neurochemistry

Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition.

Show details

Chapter 12References

, , and .

Correspondence to Michael J. Kuhar, Division of Neuroscience, Yerkes Regional Primate Research Center of Emory University, Atlanta, Georgia 30322.
Molinoff P B, Axelrod J. Biochemistry of catecholamines. Annu. Rev. Biochem. 1971;40:465–500. [PubMed: 4399447]
Goldstein, D. S., Eisenhofer, G., and McCarty, R. (eds.) Catecholamines: Bridging Basic Science with Clinical Medicine. New York: Academic Press, 1998.
Shiman R, Akino M, Kaufman S. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 1971;246:1330–1340. [PubMed: 5545077]
Grima B, Lamouroux A, Blanot F, Biguet N F, Mallet J. Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc. Natl. Acad. Sci. USA. 1985;82:617–621. [PMC free article: PMC397092] [PubMed: 2857492]
Christenson J G, Dairman W, Udenfriend S. Preparation and properties of homogeneous aromatic l-amino acid decarboxylase from hog kidney. Arch. Biochem. Biophys. 1970;141:356–367. [PubMed: 4991409]
Craine J E, Daniels G, Kaufman S. Dopamine β-hydroxylase: The subunit structure and anion activation of the bovine adrenal enzyme. J. Biol. Chem. 1973;248:7838–7844. [PubMed: 4750430]
Lamouroux A, Vigny A, Biguet N F. et al. The primary structure of human dopamine β-hydroxylase: Insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J. 1987;6:3931–3937. [PMC free article: PMC553871] [PubMed: 3443096]
Connett R J, Kirshner N. Purification and properties of bovine phenylethanolamine-N-methyltransferase. J. Biol. Chem. 1970;245:329–334. [PubMed: 5412063]
Baetge E E, Suh Y H, Joh T H. Complete nucleotide and deduced amino acid sequence of bovine phenylethanolamine N-methyltransferase: Partial amino acid homology with rat tyrosine hydroxylase. Proc. Natl. Acad. Sci. USA. 1986;83:5454–5458. [PMC free article: PMC386305] [PubMed: 2874553]
Liu Y, Peter D, Roghani A. et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992;70:539–551. [PubMed: 1505023]
Weinshilboum R M, Thoa N B, Johnson D G, Kopin I J, Axelrod J. Proportional release of norepinephrine and dopamine β-hydroxylase from sympathetic nerves. Science. 1971;174:1349–1351. [PubMed: 5135722]
Alousi A, Weiner N. The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation, cocaine and catecholamine-releasing agents. Proc. Natl. Acad. Sci. USA. 1966;56:1491–1496. [PMC free article: PMC220010] [PubMed: 4382063]
Goldstein, M. Long- and short-term regulation of tyrosine hydroxylase. In F. E. Bloom and D. J. Kupfer (eds.), Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press, 1995, pp. 189–196.
Zigmond R E, Schwarzschild M A, Rittenhouse A R. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu. Rev. Neurosci. 1989;12:415–461. [PubMed: 2564757]
Costa, E., and Sandler, M. Monoamine Oxidase: New Vistas. New York: Raven, 1972.
Nikodejevic B, Sinoh S, Daly J W, Creveling C R. Catechol-O-methyltransferase II: A new class of inhibitors of catechol-O-methyltransferase; 3,5-dihydroxy-4-methoxybenzoic acid and related compounds. J. Pharmacol. Exp. Ther. 1970;174:83–93. [PubMed: 5432229]
Axelrod J. Noradrenaline: Fate and control of its biosynthesis. Science. 1971;173:598–606. [PubMed: 4397955]
Amara S G, Kuhar M J. Neurotransmitter transporters: Recent progress. Annu. Rev. Neurosci. 1993;16:73–93. [PubMed: 8096377]
Bjorklund, A., and Hokfelt, T. (eds.) Handbook of Chemical Neuroanatomy. New York: Elsevier, 1984.
Langer S Z. Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 1974;23:1793–1800. [PubMed: 4617579]
Gingrich J A, Caron M G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 1993;16:299–321. [PubMed: 8460895]
Sibley D R, Monsma F J Jr. Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 1992;13:61–68. [PubMed: 1561715]
Minneman K P, Dibner M D, Wolfe B B, Molinoff P B. β1- and β2-adrenergic receptors in rat cerebral cortex are independently regulated. Science. 1979;204:866–868. [PubMed: 35829]
Kobilka B. Adrenergic receptors as models for G protein-coupled receptors. Annu. Rev. Neurosci. 1992;15:87–114. [PubMed: 1575451]
U'Prichard D C, Snyder S H. Distinct α-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci. 1979;24:79–88. [PubMed: 33313]
Bylund D B. Subtypes of α1- and α2-adrenergic receptors. FASEB J. 1992;6:832–839. [PubMed: 1346768]
Hieble J P, Bylund D B, Clarke D E. et al. International Union of Pharmacology recommendation for nomenclature of α1-adrenoceptors: Consensus update 1995. Pharmacol. Rev. 1995;47:267–270. [PubMed: 7568329]
Creese, I., Burt, D. R., and Snyder, S. H. Biochemical actions of neuroleptic drugs: Focus on the dopamine receptor. In L. L. Iversen, S. D. Iversen, and S. H. Snyder (eds.), Handbook of Psychopharmacology. New York: Plenum, 1978, Vol. 10, pp. 37–90.
Lefkowitz R J. G protein-coupled receptor kinases. Cell. 1993;74:409–412. [PubMed: 8394218]
Ferguson S, Barak S G, Zhang L S, Caron M G. G protein-coupled receptor regulation: Role of G protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 1996;74:1095–1110. [PubMed: 9022829]
Sterne-Marr R, Benovic J L. Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 1995;51:193–234. [PubMed: 7483322]
Zhou Q -Y, Quaife C J, Palmiter R D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995;374:640–643. [PubMed: 7715703]
Thomas S A, Palmiter R D. Disruption of the dopamine beta-hydroxylase gene in mice suggests roles for norepinephrine in motor function, learning, and memory. Behav. Neurosci. 1997;111:579–589. [PubMed: 9189272]
Giros B, Jaber M, Jones S R, Wightman R M, Caron M G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–612. [PubMed: 8628395]
Takahashi N, Miner L L, Sora I. et al. VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc. Natl. Acad. Sci. USA. 1997;94:9938–9943. [PMC free article: PMC23302] [PubMed: 9275230]
Link R E, Stevens M S, Kulatunga M, Scheinin M, Barsh G S, Kobilka B K. Targeted inactivation of the gene encoding the mouse α(2C)-adrenoceptor homol. Mol. Pharmacol. 1995;48:48–55. [PubMed: 7623774]
Rohrer D K, Desai K H, Jasper J R. et al. Targeted disruption of the mouse β-1-adrenergic receptor gene: Developmental and cardiovascular effects. Proc. Natl. Acad. Sci. USA. 1996;93:7375–7380. [PMC free article: PMC38992] [PubMed: 8693001]
Mantzoros C S, Qu D, Frederich R C. et al. Activation of β(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes. 1996;45:909–914. [PubMed: 8666142]
Grujic D, Susulic V S, Harper M E. et al. β3-Adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J. Biol. Chem. 1997;272:17686–17693. [PubMed: 9211919]
Xu M, Hu X T, Cooper D C. et al. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell. 1994;79:945–955. [PubMed: 8001143]
Drago J, Gerfen C R, Westphal H, Steiner H. D1 dopamine receptor-deficient mouse: Cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience. 1996;74:813–823. [PubMed: 8884777]
Baik J H, Picetti R, Saiardi A. et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature. 1995;377:424–428. [PubMed: 7566118]
Accili D, Fishburn C S, Drago J. et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc. Natl. Acad. Sci. USA. 1996;93:1945–1949. [PMC free article: PMC39888] [PubMed: 8700864]
Waymire J C, Craviso G L. Multiple site phosphorylation and activation of tyrosine hydroxylase. Adv. Prot. Phosphatases. 1993;7:501–513.

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 1999, American Society for Neurochemistry.
Bookshelf ID: NBK28045


  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to pubmed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...