NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.

Cover of Retroviruses

Retroviruses.

Show details

References

  1. Abbotts J., Bebenek K., Kunkel T.A., Wilson S.H. Mechanism of HIV-1 reverse transcriptase: Termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem. J. Biol. Chem. 1993;268:10312–10323. [PubMed: 7683674]
  2. Aiyar A., Ge Z., Leis J. A specific orientation of RNA secondary structures is required for initiation of reverse transcription. J. Virol. 1994;68:611–618. [PMC free article: PMC236493] [PubMed: 7507181]
  3. Aiyar A., Cobrinik D., Ge Z., Kung H.-J., Leis J. Interaction between U5 viral RNA and the TYC loop of the tRNATrp primer are required for efficient initiation of reverse transcription. J. Virol. 1992;66:2464–2472. [PMC free article: PMC289042] [PubMed: 1548772]
  4. Alford R.L., Belmont J.W. Stable RNA secondary structure in a retroviral vector insert terminates reverse transcriptase elongation in vitro but not in cultured cells. Hum. Gene Ther. 1990;1:269–276. [PubMed: 1706943]
  5. Allain B., Lapadat-Tapolsky M., Berlioz C., Darlix J.L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 1994;13:973–981. [PMC free article: PMC394899] [PubMed: 7509280]
  6. Ansari-Lari M.A., Gibbs R.A. Expression of human immunodeficiency virus type 1 reverse transcriptase in trans during virion release and after infection. J. Virol. 1996;70:3870–3875. [PMC free article: PMC190264] [PubMed: 8648723]
  7. Arnold E., Ding J., Hughes S.H., Hostomsky Z. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates. Curr. Opin. Struct. Biol. 1995;5:27–38. [PubMed: 7539708]
  8. Arnold E., Jacobo-Molina A., Nanni R.G., Williams R.L., Lu X., ding J., Clark A.D., Zhang A., Ferris A.L., Clark P., Hizi A., Hughes S.H. Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations. Nature. 1992;357:85–89. [PubMed: 1374166]
  9. Arts E.J., Li X., Gu X., Kleiman L., Parniak M.A., Wainberg M.A. Comparision of deoxyoligonucleotide and tRNALys-3 as primers in an endogenous human immunodeficiency virus-1 in vitro reverse transcription/template-switching reaction. J. Biol. Chem. 1994;269:14672–14680. [PubMed: 7514178]
  10. Awang G., Sen D. Mode of dimerization of HIV-1 genomic RNA. Biochemistry. 1993;32:11453–11457. [PubMed: 8218211]
  11. Bakhanashvili M., Hizi A. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency virus types 1 and 2 and of murine leukemia virus: Mispair extension frequencies. Biochemistry. 1992;31:9393–9398. [PubMed: 1382590]
  12. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature. 1970;226:1209–1211. [PubMed: 4316300]
  13. Baltimore D., Smoler D.F. Association of an endoribonuclease with the avian myeloblastosis virus deoxyribonucleic acid polymerase. J. Biol. Chem. 1972;247:7282–7287. [PubMed: 4344646]
  14. Barat C., Le Grice S.F.J., Darlix J.L. Interaction of HIV-1 reverse transcriptase with a synthetic form of its replication primer, tRNALys,3. Nucleic Acids Res. 1991;19:751–757. [PMC free article: PMC333707] [PubMed: 1708122]
  15. Barat C., Schatz O., Le Grice S., Darlix J.L. Analysis of the interactions of HIV-1 replication primer tRNA (Lys,3) with nucleocapsid protein and reverse transcriptase. J. Mol. Biol. 1993;231:185–190. [PubMed: 7685391]
  16. Barat C., Lullien V., Schatz O., Keith G., Nugeyre F., Gruninger-Leitch F., Barre-Sinoussi F., Le Grice S.F., Darlix J.L. HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J. 1989;8:3279–3285. [PMC free article: PMC401457] [PubMed: 2479543]
  17. Battula N., Loeb L.A. The infidelity of avian myeloblastosis virus deoxyribonucleic acid polymerase in polynucleotide replication. J. Biol. Chem. 1974;249:4086–4093. [PubMed: 4137275]
  18. Battula N., Loeb L.A. On the fidelity of DNA replication. Lack of endodeoxyribonuclease activity and error-correcting function in avian myeloblastosis virus DNA polymerase. J. Biol. Chem. 1976;251:982–986. [PubMed: 55415]
  19. Beard W.A., Stahl S.J., Kim H.R., Bebenek K., Kumar A., Strub M.P., Becerra S.P., Kunkel T.A., Wilson S.H. Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an α-helix in the thumb subdomain. J. Biol. Chem. 1994;269:28091–28097. [PubMed: 7525566]
  20. Bebenek K., Kunkel T.A. 1993. The fidelity of retroviral reverse transcriptases In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 85–102. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  21. Bebenek K., Abbotts J., Roberts J.D., Wilson S.H., Kunkel T.A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J. Biol. Chem. 1989;264:16948–16956. [PubMed: 2476448]
  22. Bebenek K., Abbotts J., Wilson S.H., Kunkel T.A. Error-prone polymerization by HIV-1 reverse transcriptase: Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J. Biol. Chem. 1993;268:10324–10334. [PubMed: 7683675]
  23. Ben-Artzi H., Zeelon E., Gorecki M., Panet A. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. 1992;89:927–931. [PMC free article: PMC48358] [PubMed: 1371014]
  24. Bender W., Chien Y.-H., Chattopadhyay S., Vogt P.K., Gardner M.B., Davidson N. High-molecular weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. J. Virol. 1978;25:888–896. [PMC free article: PMC525983] [PubMed: 205678]
  25. Berkhout B., van Wamel J., Klaver B. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J. Mol. Biol. 1995;252:59–69. [PubMed: 7666433]
  26. Berwin B., Barklis W. Retrovirus-mediated insertion of expressed and nonexpressed genes at identical chromosomal location. Nucleic Acids Res. 1993;21:2399–2407. [PMC free article: PMC309539] [PubMed: 8506135]
  27. Best S., Le Tissier P., Towers G., Stoye J.P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature. 1996;382:826–829. [PubMed: 8752279]
  28. Blackburn E.H. 1993. Telomerases In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 411–424. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. [PMC free article: PMC47778]
  29. Blain S.W., Goff S.P. Nuclease activities of Moloney murine leukemia virus reverse transcriptase: Mutants with altered substrate specificities. J. Biol. Chem. 1993;268:23585–23592. [PubMed: 7693692]
  30. Blain S.W., Goff S.P. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J. Virol. 1995;69:4440–4452. [PMC free article: PMC189186] [PubMed: 7539510]
  31. Bonhoeffer S., Holmes E.C., Nowak M.A. Causes of HIV diversity. Nature. 1995;376:125. [PubMed: 7603560]
  32. Boon L.R., Skalka A. Two species of full-length cDNA are synthesized in high yield by melittin-treated avian retrovirus particles. Proc. Natl. Acad. Sci. 1980;77:847–851. [PMC free article: PMC348378] [PubMed: 6153806]
  33. Boon L.R., Skalka A. Viral DNA synthesized by avian retrovirus particles permeabilized with melittin. I. Evidence for a strand displacement mechanism in plus-strand synthesis. J. Virol. 1981a;37:117–126. [PMC free article: PMC170988] [PubMed: 6260967]
  34. Boon L.R., Skalka A. Viral DNA synthesized by avian retrovirus particles permeabilized with melittin. I. Kinetics of synthesis and size of minus- and plus-strand transcripts. J. Virol. 1981b;37:109–116. [PMC free article: PMC170987] [PubMed: 6260966]
  35. Borman A.M., Quillent C., Charneau P., Kean K.M., Clavel F. A highly defective HIV-1 group O provirus: Evidence for the role of local sequence determinants in G→A hypermutation during negative-strand viral DNA synthesis. Virology. 1995;208:601–609. [PubMed: 7747432]
  36. Borroto-Esoda K., Boone L.R. Equine infectious anemia virus and human immunodeficiency virus DNA synthesis in vitro: Characterization of the endogenous reverse transcriptase reaction. J. Virol. 1991;65:1952–1959. [PMC free article: PMC240025] [PubMed: 1705993]
  37. Bowerman B., Brown P.O., Bishop J.M., Varmus H.E. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 1989;3:469–478. [PubMed: 2721960]
  38. Boyer J.C., Bebenek K., Kunkel T.A. Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates. Proc. Natl. Acad. Sci. 1992a;89:6919–6923. [PMC free article: PMC49616] [PubMed: 1379727]
  39. Boyer P.L., Ferris A.L., Hughes S.H. Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1. J. Virol. 1992b;66:1031–1039. [PMC free article: PMC240806] [PubMed: 1370546]
  40. Boyer P.L., Ferris A.L., Hughes S.H. Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 1992c;66:7533–7537. [PMC free article: PMC240464] [PubMed: 1279205]
  41. Boyer P.L., Ding J., Arnold E., Hughes S.H. Drug resistance of human immunodeficiency virus type 1 reverse transcriptase: Subunit specificity of mutations that confer resistance to nonnucleoside inhibitors. Antimicrob. Agents Chemother. 1994a;38:1909–1914. [PMC free article: PMC284661] [PubMed: 7529011]
  42. Boyer P.L., Tantillo C., Jacobo-Molina A., Nanni R.G., Ding J., Arnold E., Hughes S.H. Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxynucleotides depends on template length: The sensitivity of drug-resistant mutants does not. Proc. Natl. Acad. Sci. 1994b;91:4882–4886. [PMC free article: PMC43893] [PubMed: 7515182]
  43. Boyer P.L., Ferris A.L., Clark P., Whitmer J., Frank P., Tantillo C., Arnold E., Hughes S.H. Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J. Mol. Biol. 1994c;243:472–483. [PubMed: 7525967]
  44. Braaten D., Franke E.K., Luban J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 prior to the initiation of reverse transcription. J. Virol. 1996;70:3551–3560. [PMC free article: PMC190230] [PubMed: 8648689]
  45. Brown P.O., Bowerman B., Varmus H.E., Bishop J.M. Correct integration of retroviral DNA in vitro. Cell. 1987;49:347–356. [PubMed: 3032450]
  46. Brown P.O., Bowerman B., Varmus H.E., Bishop J.M. Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the IN protein. Proc. Natl. Acad. Sci. 1989;86:2525–2529. [PMC free article: PMC286949] [PubMed: 2539592]
  47. Buiser R.G., DeStefano J.J., Mallaber L.M., Fay P.J., Bambara R.A. Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases. J. Biol. Chem. 1991;266:13103–13109. [PubMed: 1712774]
  48. Bukrinsky M.I., Sharova N., McDonald T.L., Pushkarskaya T., Tarpley W.G., Stevenson M. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type I with viral nucleic acids following accute infection. Proc. Natl. Acad. Sci. 1993;90:6125–6129. [PMC free article: PMC46880] [PubMed: 7687060]
  49. Cattaneo R. Biased (A→I) hypermutation of animal RNA virus genomes. Curr. Opin. Genet. Dev. 1994;4:895–900. [PubMed: 7888761]
  50. Chamorro M., Parkin N., Varmus H.E. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc. Natl. Acad. Sci. 1992;89:713–717. [PMC free article: PMC48309] [PubMed: 1309954]
  51. Champoux J.J. 1993. Roles of ribonuclease H in reverse transcription In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 103–117. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  52. Champoux J.J., Gilboa E., Baltimore D. Mechanism of RNA primer removal by the RNase H activity of avian myeloblastosis virus reverse transcriptase. J. Virol. 1984;49:686–691. [PMC free article: PMC255525] [PubMed: 6199510]
  53. Chao S.F., Chan V.L., Juranka P., Kaplan A.H., Swanstrom R., Hutchison C.A. Mutational sensitivity patterns define critical residues in the palm subdomain of the reverse transcriptase of human immunodeficiency virus type 1. J. Nucleic Acids Res. 1995;23:803–810. [PMC free article: PMC306763] [PubMed: 7535923]
  54. Charneau P., Clavel F. A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J. Virol. 1991;65:2415–2421. [PMC free article: PMC240594] [PubMed: 2016765]
  55. Charneau P., Alizon M., Clavel F. Second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol. 1992;66:2814–2820. [PMC free article: PMC241038] [PubMed: 1560526]
  56. Charneau R., Mirambeau G., Roux P., Paulous S., Buc H., Clavel F. HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol. 1994:651–662. [PubMed: 7520946]
  57. Chattopadhyay D., Finzel B.C., Munson S.H., Evans D.B., Sharma S.K., Strakalattis N.A., Brunner D.P., Echenrode F.M., Dauter Z., Betzel C., Einspahr H.M. Crystallographic analysis of an active HIV-1 ribonuclease H domain show structural features that distinguish it from the inactive form. Acta Crystallogr. D. 1993;49:423–427. [PubMed: 15299518]
  58. Chen I.S.Y., Temin H.M. Establishment of infection by spleen necrosis virus: Inhibition in stationary cells and the role of secondary infection. J. Virol. 1982;41:183–191. [PMC free article: PMC256739] [PubMed: 6283112]
  59. Chen X., Chamorro M., Lee S.I., Shen L.X., Hines J.V., Tinoco I.J., Varmus H.E. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: Nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 1995;14:842–852. [PMC free article: PMC398151] [PubMed: 7882986]
  60. Clavel F., Hoggan M.D., Willey R.L., Strebel K., Martin M.A., Repaske R. Genetic recombination of human immunodeficiency virus. J. Virol. 1989;63:1455–1459. [PMC free article: PMC247851] [PubMed: 2915387]
  61. Coffin J.M. Structure, replication, and recombination of retrovirus genomes: Some unifying hypotheses. J. Gen. Virol. 1979;42:1–26. [PubMed: 215703]
  62. Coffin J.M. 1990. Retroviridae and their replication In Virology (ed. B.N. Fields et al.), pp. 1437–1500. Raven Press, New York.
  63. Coffin J.M. 1993. Reverse transcription and evolution In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 445–479. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. [PMC free article: PMC46215]
  64. Coffin J.M. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis and therapy. Science. 1995;267:483–489. [PubMed: 7824947]
  65. Coffin J.M., Haseltine W.A. Terminal redundancy and the origin of replication of Rous sarcoma virus RNA. Proc. Natl. Acad. Sci. 1977;74:1908–1912. [PMC free article: PMC431041] [PubMed: 68472]
  66. Coffin J.M., Hageman T.C., Maxam A.M., Haseltine W.A. Structure of the genome of Moloney murine leukemia virus: A terminally redundant sequence. Cell. 1978;13:761–773. [PubMed: 657274]
  67. Colicelli J., Goff S.P. Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA. J. Virol. 1986;57:37–45. [PMC free article: PMC252696] [PubMed: 2416955]
  68. Collett M.S., Leis J.P., Smith M.S., Faras A.J. Unwinding-like activity associated with retrovirus RNA-directed DNA polymerase. J. Virol. 1978;26:498–509. [PMC free article: PMC354087] [PubMed: 77911]
  69. Cordell B., Swanstrom R., Goodman H., Bishop J.M. tRNAtrp as primer for RNA-directed DNA polymerase: Structural determinants of function. J. Biol. Chem. 1979;254:1866–1874. [PubMed: 84811]
  70. Crawford S., Goff S.P. Mutations in gag proteins p12 and p15 of Moloney murine leukemia virus block early stages of infection. J. Virol. 1984;49:909–917. [PMC free article: PMC255553] [PubMed: 6608006]
  71. Cronn R.C., Whitmer J.D., North T.W. RNase H activity associated with reverse transcriptase from feline immunodeficiency virus. J. Virol. 1992;66:1215–1222. [PMC free article: PMC240830] [PubMed: 1370549]
  72. Crouch R.J. Ribonuclease H: From discovery to 3D structure. New Biol. 1990;2:771–777. [PubMed: 2177653]
  73. Darlix J.-L., Gabus C., Nugeyre M., Clavel F., Barré-Sinoussi F. cis Elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J. Mol. Biol. 1990;216:689–699. [PubMed: 2124274]
  74. Darlix J.-L., Yu C., Berthoux L., Ottmann M., Jullian N., Roques B. La nucleocapside du VIH-1: Un paradigme pour la recherche et ses applications medicales. Medecine/Sciences. 1995;11:420–429.
  75. Darlix J.-L., Vincent A., Gabus C., deRocquigny H., Roques B. trans-Activation of the 5′to 3′viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV 1 RNA. C.R. Acad. Sci. 1993;316:763–771. [PubMed: 7519118]
  76. Das A.T., Berkhout B. Efficient extension of a misaligned tRNA-primer during replication of the HIV-1 retrovirus. Nucleic Acids Res. 1995;23:1319–1326. [PMC free article: PMC306856] [PubMed: 7538660]
  77. Das A.T., Klaver B., Berkhout B. Reduced replication of human Immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3-Lys) J. Virol. 1995;69:3090–3097. [PMC free article: PMC189010] [PubMed: 7707537]
  78. Davies J.F. II, Almassy R.J., Hostomsky Z., Ferre R.A., Hostomsky Z. 2.3 Å crystal structure of the catalytic domain of DNA polymerase β Cell. 1994;76:1123–1133. [PubMed: 8137427]
  79. Davies J.F. II, Hostomska Z., Hostomsky Z., Jordan S.R., Matthews D.A. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science. 1991;252:88–95. [PubMed: 1707186]
  80. De Clercq E. HIV inhibitors targeted at the reverse transcriptase. AIDS Res. Hum. Retroviruses. 1992;8:119–134. [PubMed: 1371690]
  81. Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases. Protein Eng. 1990;3:461–467. [PubMed: 2196557]
  82. DesGrolliers L., Rassart E., Zollinger M., Jolicoeur P. Synthesis of murine leukemia viral DNA in vitro: Evidence for plus-strand DNA synthesis at both ends of the genome. J. Virol. 1982;42:326–330. [PMC free article: PMC256077] [PubMed: 6283152]
  83. DeStefano J.J., Bambara R.A., Fay P.J. The mechanism of human immunodeficiency virus reverse-transcriptase-catalyzed strand transfer from internal regions of heteropolymeric RNA templates. J. Biol. Chem. 1994a;269:161–168. [PubMed: 7506252]
  84. DeStefano J.J., Buiser R.G., Mallaber L.M., Bambara R.A., Fay P.J. Human immunodeficiency virus reverse transcriptase displays a partially processive 3′to 5′endonuclease activity. J. Biol. Chem. 1991a;266:24295–24301. [PubMed: 1722202]
  85. DeStefano J.J., Buiser R.G., Mallaber L.M., Fay P.J., Bambara R.A. Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochim. Biophys. Acta. 1992a;1131:270–280. [PubMed: 1378301]
  86. DeStefano J.J., Mallaber L.M., Rodriguez-Rodriguez L., Fay P.J., Bambara R.A. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J. Virol. 1992b;66:6370–6378. [PMC free article: PMC240129] [PubMed: 1383563]
  87. DeStefano J.J., Buiser R.G., Mallaber L.M., Myers T.W., Bambara R.A., Fay P.J. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency and Moloney murine leukemia viruses are functionally uncoupled. J. Biol. Chem. 1991b;266:7423–7431. [PubMed: 1708386]
  88. DeStefano J.J., Wu W., Seehra J., McCoy J., Laston D., Albone E., Fay P.J., Bambara R.A. Characterization of an RNase H deficient mutant of human immunodeficiency virus-1 reverse transcriptase having an aspartate to asparagine change at position 498. Biochim. Biophys. Acta. 1994b;1219:380–388. [PubMed: 7522572]
  89. Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P.A.J., Hughes S.H., Arnold E. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Struct. Biol. 1995a;2:407–415. [PubMed: 7545077]
  90. Ding J., Das K., Tantillo C., Zhang W., Clark A.D. Jr., Jessen S., Lu X., Hsiou Y., Jacobo-Molina A., Andries K., Pauwels R., Moereels H., Koymans L., Janssen P.A.J., Smith R.H. Jr., Kroeger Koepke M., Michejda C.J., Hughes S.H., Arnold E. Structure of HIV-1 reverse transcriptase in a complex with the nonnucleoside inhibitor of α-APA R 95845 at 2.8 Å resolution. Structure. 1995b;3:365–379. [PubMed: 7542140]
  91. Doolittle R.F., Feng D.-F., Johnson M.S., McClure M.A. Origin and evolutionary relationships of retroviruses. Q. Rev. Biol. 1989;64:1–30. [PubMed: 2469098]
  92. Dougherty J.P., Temin H.M. High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol. Cell. Biol. 1986;6:4387–4395. [PMC free article: PMC367221] [PubMed: 3796606]
  93. Dougherty J.P., Temin H.M. Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J. Virol. 1988;62:3084–3091. [PMC free article: PMC253716] [PubMed: 2839703]
  94. Dudding L.R., Nkabinde N.C., Mizrahi V. Analysis of the RNA- and DNA-dependent DNA polymerase activities of point mutants of HIV-1 reverse transcriptase lacking ribonuclease H activity. Biochemistry. 1991;30:10498–10506. [PubMed: 1718422]
  95. Dunn M.M., Olsen J.C., Swanstrom R. Characterization of unintegrated retroviral DNA with long terminal repeat-associated cell-derived inserts. J. Virol. 1992;66:5735–5743. [PMC free article: PMC241448] [PubMed: 1382140]
  96. Eisenman R.N., Vogt V.M. The biosynthesis of oncovirus proteins. Biochim. Biophys. Acta. 1978;475:187–259. [PubMed: 77678]
  97. Elder J.H., Lerner D.L., Hasselkus-Light C.S., Fontenot D.J., Hunter E., Luciw P.A., Montelaro R.C., Phillips T.R. Distinct subsets of retroviruses encode dUTPase. J. Virol. 1992;66:1791–1794. [PMC free article: PMC240941] [PubMed: 1310783]
  98. Enssle J., Jordan I., Mauer B., Rethwilm A. Foamy virus reverse transcriptase is expressed independently from the Gag protein. Proc. Natl. Acad Sci. 1996;93:4137–4141. [PMC free article: PMC39500] [PubMed: 8633029]
  99. Esnouf R., Ren J., Ross R., Jones Y., Stammers D., Stuart D. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Nat. Struct. Biol. 1995;2:303–308. [PubMed: 7540935]
  100. Evans D.B., Brawn K., Deibel M.R., Tarpley W.G. Jr., Sharma S.K. A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active. J. Biol. Chem. 1991;266:20583–20585. [PubMed: 1718968]
  101. Farmerie W.G., Loeb D.D., Casavant N.C., Hutchinson III C.A., Edgell M.H., Swanstrom R. Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli. Science. 1987;236:305–308. [PubMed: 2436298]
  102. Farnet C.N., Haseltine W.A. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Virol. 1991;65:1910–1915. [PMC free article: PMC240011] [PubMed: 2002549]
  103. Fedoroff O., Salazar M., Reid B.R. Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA. J. Mol. Biol. 1993;233:509–523. [PubMed: 8411159]
  104. Finston W.I., Champoux J.J. RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro. J. Virol. 1984;51:26–33. [PMC free article: PMC254394] [PubMed: 6202882]
  105. Fitzgibbon J.E., Mazar S., Dubin D.T. A new type of G→A hypermutation affecting human immunodeficiency virus. AIDS Res. Hum. Retroviruses. 1993;9:833–838. [PubMed: 7504935]
  106. Franke E.K., Yuan H.E., Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994;372:359–362. [PubMed: 7969494]
  107. Fritsch E.F., Temin H.M. Inhibition of viral DNA synthesis in stationary chicken embryo fibroblasts infected with avian retroviruses. J. Virol. 1977;24:461–469. [PMC free article: PMC515955] [PubMed: 916025]
  108. Fu T.-B., Taylor J. When retroviral reverse transcriptases reach the end of their RNA templates. J. Virol. 1992;66:4271–4278. [PMC free article: PMC241232] [PubMed: 1376369]
  109. Furfine E.S., Reardon J.E. Reverse transcriptase RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem. 1991;266:406–412. [PubMed: 1702425]
  110. Fütterer J., Hohn T. Involvement of nucleocapsids in reverse transcription: A general phenomenon? Trends Biochem. Sci. 1987;12:92–95.
  111. Garces J., Wittek R. Reverse-transcriptase-associated RNaseH activity mediates template switching during reverse transcription in vitro. Proc. R. Soc. Lond. B Biol. Sci. 1991;243:235–239. [PubMed: 1711233]
  112. Garret M., Romby P., Giege R., Litvak S. Interactions between avian myeloblastosis reverse transcriptase and tRNAtrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Res. 1984;12:2259–2271. [PMC free article: PMC318660] [PubMed: 6200830]
  113. Georgiadis M.M., Jessen S.M., Telesnitsky A., Goff S.P., Hendrickson W.A. Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 1995;3:879–892. [PubMed: 8535782]
  114. Ghosh M., Howard K.J., Cameron C.E., Benkovic S.J., Hughes S.H., Grice S.F. Le. Truncating α-helix E′ of p66 human immunodeficiency virus reverse transcriptase modulates RNase H function and impairs DNA strand transfer. J. Biol. Chem. 1995;270:7068–7076. [PubMed: 7535765]
  115. Gilboa E., Mitra S.W., Goff S.P., Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979a;18:93–100. [PubMed: 509527]
  116. Gilboa E., Goff S., Shields A., Yoshimura F., Mitra S., Baltimore D. In vitro synthesis of a 9 kbp terminally redundant DNA carrying the infectivity of Moloney murine leukemia virus. Cell. 1979b;16:863–874. [PubMed: 88264]
  117. Goel R., Beard W.A., Kumar A., Casas-Finet J.R., Strub M.P., Stahl S.J., Lweis M.S., Bebenek K., Becerra S.P., Kunkel T.A., Wilson S.H. Structure/function studies of HIV-1(1) reverse transcriptase: Dimerization-defective mutant L289K. Biochemistry. 1993;32:13012–13018. [PubMed: 7694651]
  118. Goff S.P. Retroviral reverse transcriptase: Synthesis, structure and function. J. Acquired Immune Defic. Syndr. 1990;3:817–831. [PubMed: 1694894]
  119. Goff S.P., Traktman P., Baltimore D. Isolation and properties of Moloney murine leukemia virus mutants: Use of a rapid assay for release of virion reverse transcriptase. J. Virol. 1981;38:239–248. [PMC free article: PMC171145] [PubMed: 6165830]
  120. Goff S.P., Tabin C., Wang J., Weinberg R.W., Baltimore D. Transfection of fibroblasts by cloned Abelson murine leukemia virus DNA and recovery of transmissible virus by recombination with helper virus. J. Virol. 1982;41:271–285. [PMC free article: PMC256749] [PubMed: 6283119]
  121. Gojobori T., Yokoyama S. Rates of evolution of the retroviral oncogene of Moloney murine sarcoma virus and of its cellular homologues. Proc. Natl. Acad. Sci. 1985;82:4198–4201. [PMC free article: PMC397963] [PubMed: 2987967]
  122. Goldfarb M.P., Weinberg R.A. Generation of novel, biologically active Harvey sarcoma viruses via apparent illegitimate recombination. J. Virol. 1981a;38:136–150. [PMC free article: PMC171133] [PubMed: 7241647]
  123. Goldfarb M.P., Weinberg R.A. Structure of the provirus within NIH 3T3 cells transfected with Harvey sarcoma virus DNA. J. Virol. 1981b;38:125–135. [PMC free article: PMC171132] [PubMed: 7241646]
  124. Goncalves J., Korin Y., Zack J., Gabuzda D. Role of vif in human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 1996;70:8701–8709. [PMC free article: PMC190965] [PubMed: 8970997]
  125. Goodrich D.W., Duesberg P.H. Retroviral transduction of oncogenic sequences involves viral DNA instead of RNA. Proc. Natl. Acad. Sci. 1988;85:3733–3737. [PMC free article: PMC280292] [PubMed: 2836857]
  126. Goodrich D.W., Duesberg P.H. Evidence that retroviral transduction is mediated by DNA, not RNA. Proc. Natl. Acad. Sci. 1990a;87:3604–3608. [PMC free article: PMC53950] [PubMed: 2159155]
  127. Goodrich D.W., Duesberg P.H. Retroviral recombination during reverse transcription. Proc. Natl. Acad. Sci. 1990b;87:2052–2056. [PMC free article: PMC53624] [PubMed: 1690424]
  128. Gopalakrishnan V., Peliska J.A., Benkovic S.J. Human immunodeficiency virus type 1 reverse transcriptase: Spatial and temporal relationship between the polymerase and RNase H activities. Proc. Natl. Acad. Sci. 1992;89:10763–10767. [PMC free article: PMC50422] [PubMed: 1279694]
  129. Gorelick R.J., Henderson L.E., Hanser J.P., Rein A. Point mutants of Moloney murine leukemia virus that fail to package viral RNA: Evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc. Natl. Acad. Sci. 1988;85:8420–8424. [PMC free article: PMC282469] [PubMed: 3141927]
  130. Gorelick R.J., Chabot D.J., Rein A., Henderson L.E., Arthur L.O. The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid are not functionally equivalent. J. Virol. 1993;67:4027–4036. [PMC free article: PMC237770] [PubMed: 8510214]
  131. Gorelick R.J., Nigida S.M.J., Arthur L.O., Henderson L.E., Rein A. 1990. Roles of nucleocapsid cysteine arrays in retroviral assembly and replication: Possible mechanisms in RNA encapsidation In Advances in molecular biology and targeted treatment for AIDS (ed. A. Kumar), pp. 257–273. Plenum Press, New York. [PMC free article: PMC55059]
  132. Gorelick R.J., Chabot D.J., Ott D.E., Gagliardi T.D., Rein A., Henderson L.E., Arthur L.O. Genetic analysis of the zinc finger in the Moloney murine leukemia virus nucleocapsid domain: Replacement of zinc-coordinating residues with other zinc-coordinating residues yields noninfectious particles containing genomic RNA. J. Virol. 1996;70:2593–2597. [PMC free article: PMC190107] [PubMed: 8642691]
  133. Gotte M., Facler S., Herman T., Perola E., Cellai L., Gross H.J., Le Grice S.F.J., Heumann H. HIV-1 reverse transcriptase-associated RNaseH cleaves RNA/RNA in arrested complexes: Implications for the mechanism by which RNaseH discriminates between RNA/RNA and RNA/DNA. EMBO J. 1995;14:833–841. [PMC free article: PMC398150] [PubMed: 7533725]
  134. Green L., Waugh S., Binkley J.P., Hostomska Z., Hostomsky Z., Tuerk C. Comprehensive chemical modification interference and nucleotide substitution analysis of an RNA pseudoknot inhibitor to HIV-1 reverse transcriptase. J. Mol. Biol. 1995;247:60–68. [PubMed: 7534830]
  135. Guo J., Wu W., Yuan Z.Y., Post K., Crouch R.J., Levin J.G. Defects in primer-template binding, processive DNA synthesis, and RNaseH activity associated with chimeric reverse transcriptases having the murine leukemia virus polymerase domain joined to Escherichia coli RNaseH. Biochemistry. 1995;34:5018–5029. [PubMed: 7536033]
  136. Hajjar A.M., Linial M.L. A model system for nonhomologous recombination between retroviral and cellular RNA. J. Virol. 1993;67:3845–3853. [PMC free article: PMC237749] [PubMed: 7685401]
  137. Hajjar A.M., Linial M.L. Modification of retroviral RNA by double-stranded RNA adenosine deaminase. J. Virol. 1995;69:5878–5882. [PMC free article: PMC189466] [PubMed: 7543593]
  138. Hansen J., Schulze T., Moelling K. RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus. J. Biol. Chem. 1987;262:12393–12396. [PubMed: 2442162]
  139. Harada F., Peters G.G., Dahlberg J.E. The primer tRNA for Moloney murine leukemia virus DNA synthesis: Nucleotide sequence and aminoacylation of tRNApro. J. Biol. Chem. 1979;254:10979–10985. [PubMed: 115865]
  140. Harada F., Sawyer R.C., Dahlberg J.E. A primer ribonucleic acid for initiation of in vitro Rous sarcoma virus deoxyribonucleic acid synthesis. J. Biol. Chem. 1975;250:3487–3497. [PubMed: 164470]
  141. Harris J.D., Scott J.V., Traynor B., Brahic M., Stowring L., Ventura P., Haase A.T., Peluso R. Visna virus DNA: Discovery of a novel gapped structure. Virology. 1981;113:573–583. [PubMed: 6267799]
  142. Haseltine W.A., Coffin J.M., Hageman T.C. Structure of products of the Moloney murine leukemia virus endogenous DNA polymerase reaction. J. Virol. 1979;30:375–383. [PMC free article: PMC353331] [PubMed: 90161]
  143. Haseltine W.A., Panet A., Smoler D., Baltimore D. Interaction of tryptophan tRNA and avian myeloblastosis virus reverse transcriptase: Further characterization of the binding reaction. Biochemistry. 1977;16:3625–3632. [PubMed: 70221]
  144. Haseltine W.A., Kleid D.G., Panet A., Rothenberg E., Baltimore D. Ordered transcription of RNA tumor virus genomes. J. Mol. Biol. 1976;106:109–131. [PubMed: 61277]
  145. Herman S.A., Coffin J.M. Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. J. Virol. 1986;60:497–505. [PMC free article: PMC288918] [PubMed: 3021984]
  146. Hizi A., Hughes S.H. Expression in Escherichia coli of a Moloney murine leukemia virus reverse transcriptase whose structure closely resembles the viral enzyme. Gene. 1988;66:319–323. [PubMed: 2458989]
  147. Hizi A., Joklik W.K. RNA-dependent DNA polymerase of avian sarcoma virus B77. I. Isolation and partial characterization of the α, β2, and αβ forms of the enzyme. J. Biol. Chem. 1977;252:2281–2289. [PubMed: 66234]
  148. Hizi A., Barber A., Hughes S.H. Effects of small insertions on the RNA-dependent DNA polymerase activity of HIV-1 reverse transcriptase. Virology. 1989;170:326–329. [PubMed: 2470195]
  149. Hizi A., Hughes S.H., Shaharabany M. Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase. Virology. 1990;175:575–580. [PubMed: 1691564]
  150. Hizi A., McGill C., Hughes S.H. Expression of soluble, enzymatically active, human immunodeficiency virus reverse transcriptase in Escherichia coli and analysis of mutants. Proc. Natl. Acad. Sci. 1988;85:1218–1222. [PMC free article: PMC279738] [PubMed: 2448794]
  151. Hizi A., Tal R., Hughes S.H. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli. Virology. 1991;180:339–346. [PubMed: 1701948]
  152. Ho D., Neumann A., Perelson A., Chen W., Leonard J., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-I infection. Nature. 1995;373:123–126. [PubMed: 7816094]
  153. Holm L., Sander C. DNA polymerase β belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem. Sci. 1995;20:345–347. [PubMed: 7482698]
  154. Holzschu D.L., Martineau D., Fodor S.K., Vogt V.M., Bowser P.R., Casey J.W. Nucleotide sequence and protein analysis of a complex piscine retrovirus, walleye dermal sarcoma virus. J. Virol. 1995;69:5320–5331. [PMC free article: PMC189371] [PubMed: 7636975]
  155. Hostomsky Z., Hostomska Z., Matthews D.A. 1993. Ribonucleases H In Nucleases, 2nd edition (ed. S.M. Linn et al.), pp. 341–376. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  156. Hostomsky Z., Hostomska Z., Fu T.-B., Taylor J. Reverse transcriptase of human immunodeficiency virus type 1: Functionality of subunits of the heterodimer in DNA synthesis. J. Virol. 1992a;66:3179–3182. [PMC free article: PMC241083] [PubMed: 1373206]
  157. Hostomsky Z., Hudson G.O., Rahmati S., Hostomska Z. RNase-D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III. Nucleic Acids Res. 1992b;20:5819–5824. [PMC free article: PMC334421] [PubMed: 1280810]
  158. Hostomsky Z., Hughes S.H., Goff S.P., Grice S.F. Le. Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H*. J. Virol. 1994;68:1970–1971. [PMC free article: PMC236660] [PubMed: 7509004]
  159. Hostomsky Z., Hostomska Z., Hudson G.O., Moomaw E.W., Nodes B.R. Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. 1991;88:1148–1152. [PMC free article: PMC50974] [PubMed: 1705027]
  160. Hottiger M., Podust V.N., Thimmig R.L., McHenry C., Hubscher U. Strand displacement activity of the human immunodeficiency virus type 1 reverse transcriptase heterodimer and its individual subunits. J. Biol. Chem. 1994;269:986–991. [PubMed: 7507115]
  161. Hsieh J.C., Zinnen S., Modrich P. Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase. J. Biol. Chem. 1993;268:24607–24613. [PubMed: 7693703]
  162. Hsiou Y., Ding J., Das K., Clark A.D. Jr., Hughes S.H., Arnold E. Structure of unliganded human immunodeficiency virus type 1 reverse transcriptase at 2.7 Å resolution: Implications of conformational changes for polymerization and inhibition mechanisms. Structure. 1996;4:853–860. [PubMed: 8805568]
  163. Hsu H.-W., Schwartzberg P., Goff S.P. Point mutations in the p30 domain of the gag gene of Moloney murine leukemia virus. Virology. 1985;142:211–214. [PubMed: 2414902]
  164. Hsu T.W., Taylor J.M. Single-stranded regions on unintegrated avian retrovirus DNA. J. Virol. 1982;44:47–53. [PMC free article: PMC256239] [PubMed: 6292503]
  165. Hu J.C., Dahlberg J.E. Structural features required for binding of tRNAtrp to avian myeloblastosis virus reverse transcriptase. Nucleic Acids Res. 1983;11:4823–4833. [PMC free article: PMC326088] [PubMed: 6192393]
  166. Hu W.-S., Temin H.M. Genetic consequences of packaging two RNA genomes in one retroviral particle: Pseudodiploidy and high rate of genetic recombination. Proc. Natl. Acad. Sci. 1990a;87:1556–1560. [PMC free article: PMC53514] [PubMed: 2304918]
  167. Hu W.-S., Temin H.M. Retroviral recombination and reverse transcription. Science. 1990b;250:1227–1233. [PubMed: 1700865]
  168. Hu W.-S., Temin H.M. Effect of γ radiation on retroviral recombination. J. Virol. 1992;66:4457–4463. [PMC free article: PMC241254] [PubMed: 1602553]
  169. Huang C.C., Hay N., Bishop J.M. The role of RNA molecules in transduction of the proto-oncogene c-fps. Cell. 1986;44:935–940. [PubMed: 2420470]
  170. Huber H.E., Richardson C.C. Processing the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J. Biol. Chem. 1990;265:10565–10573. [PubMed: 1693920]
  171. Huber H.E., McCoy J.M., Seehra J.S., Richardson C.C. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis and template switching. J. Biol. Chem. 1989;264:4669–4678. [PubMed: 2466838]
  172. Hughes S.H., Hostomsky Z., Le Grice S.F., Lentz K., Arnold E. What is the orientation of DNA polymerases on their templates? J. Virol. 1996;70:2679–2683. [PMC free article: PMC190123] [PubMed: 8627740]
  173. Hurwitz J., Leis J. RNA-dependent DNA polymerase activity of RNA tumor viruses. I. Directing influence of DNA in the reaction. J. Virol. 1972;9:116–129. [PMC free article: PMC356270] [PubMed: 4333538]
  174. Jacobo-Molina A., Clark A.D.J., Williams R.L., Nanni R.G., Clark P., Ferris A.L., Hughes S.H., Arnold E. Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal Fab fragment and double-stranded DNA diffract X-rays to a 3.5-Å resolution. Proc. Natl. Acad. Sci. 1991;88:10895–10899. [PMC free article: PMC53038] [PubMed: 1720554]
  175. Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D., Lu X., Tantillo C., Williams R.L., Kamer G., Ferris A.L., Clark P., Hizi A., Hughes S.H., Arnold E. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. 1993;90:6320–6324. [PMC free article: PMC46920] [PubMed: 7687065]
  176. Jacques P.S., Wöhrl B.M., Ottmann M., Darlix J.L., Grice S.F. Le. Mutating the “primer grip” of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization. J. Biol. Chem. 1994;269:26472–26478. [PubMed: 7523408]
  177. Jamjoom G.A., Naso R.B., Arlinghaus R.B. Further characterization of intracellular precursor polyproteins of Rauscher leukemia virus. Virology. 1977;78:11–34. [PubMed: 67705]
  178. Ji J., Loeb L.A. Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene. Virology. 1994;199:323–330. [PubMed: 7510083]
  179. Jiang M., Mak J., Ladha A., Cohen E., Klein M., Rovinski B., Kleiman L. Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. J. Virol. 1993;67:3246–3253. [PMC free article: PMC237665] [PubMed: 8497049]
  180. Johnson M.S., McClure M.A., Feng D.-F., Gray J., Doolittle R.F. Computer analysis of retroviral pol genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. 1986;83:7648–7652. [PMC free article: PMC386778] [PubMed: 2429313]
  181. Johnson V.A., Byington R.E., Kaplan J.C. 1990. Reverse transcriptase (RT) activity assay In Techniques in HIV research (ed. A. Aldovini and B.D. Walker), pp. 97–102. Stockton Press, New York.
  182. Jones J.S., Allan R.W., Temin H.M. Alteration of location of dimer linkage sequence in retroviral RNA: Little effect on replication or homologous recombination. J. Virol. 1993;67:3151–3158. [PMC free article: PMC237653] [PubMed: 8388494]
  183. Jones J.S., Allan R.W., Temin H.M. One retroviral RNA is sufficient for synthesis of viral DNA. J. Virol. 1994;68:207–216. [PMC free article: PMC236279] [PubMed: 8254730]
  184. Joyce C.M., Steitz T.A. Function and structure relationships in DNA polymerases. Annu. Rev. Biochem. 1994;63:777–822. [PubMed: 7526780]
  185. Junghans R.P., Boone L.R., Skalka A.M. Products of reverse transcription in avian retrovirus analyzed by electron microscopy. J. Virol. 1982a;37:544–554. [PMC free article: PMC256158] [PubMed: 6180182]
  186. Junghans R.P., Boone L.R., Skalka A.M. Retroviral DNA H structures: Displacement-assimilation model of recombination. Cell. 1982b;30:53–62. [PubMed: 6181896]
  187. Kanaya S., Kohara A., Miura Y., Sekiguchi A., Iwai S., Inoue H., Ohtsuka E., Ikehara M. Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H. J. Biol. Chem. 1990;265:4615–4621. [PubMed: 1689729]
  188. Karpel R.L., Henderson L.E., Oroszlan S. Interactions of retroviral structural proteins with single-stranded nucleic acids. J. Biol. Chem. 1987;262:4961–4967. [PubMed: 2435721]
  189. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Ikehara M., Matsuzaki T., Morikawa K. Three-dimensional structure of ribonuclease H from E. coli. Nature. 1990;347:306–309. [PubMed: 1698262]
  190. Kati W.M., Johnson K.A., Jerva L.F., Anderson K.S. Mechanism and fidelity of HIV reverse transcriptase. J. Biol. Chem. 1992;267:25988–25997. [PubMed: 1281479]
  191. Katz R.A., Skalka A.M. Generation of diversity in retroviruses. Annu. Rev. Genet. 1990;24:409–445. [PubMed: 1708222]
  192. Keck J.L., Marqusee S. Substitution of a highly basic helix/loop sequence into the RNase H domain of human immunodeficiency virus reverse transcriptase restores its Mn(2+)-dependent RNase H activity. Proc. Natl. Acad. Sci. 1995;92:2740–2744. [PMC free article: PMC42294] [PubMed: 7535929]
  193. Khan R., Giedroc D.P. Recombinant human immunodeficiency virus type 1 nucleocapsid protein unwinds tRNA. J. Biol. Chem. 1992;267:6689–6695. [PubMed: 1551877]
  194. Kim S., Byrn R., Groopman J., Baltimore D. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression. J. Virol. 1989;63:3708–3713. [PMC free article: PMC250962] [PubMed: 2760980]
  195. Kimberlin D.W., Coen D.M., Biron K.K., Cohen J.I., Lamb R.A., McKinley M., Emini E.A., Whitley R.J. Molecular mechanisms of antiviral resistance. Antiviral Res. 1995;26:369–401. [PubMed: 7574541]
  196. Klarmann G.J., Schauber C.A., Preston B.D. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-I sequences in vitro. J. Biol. Chem. 1993;268:9793–9802. [PubMed: 7683663]
  197. Klaver B., Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res. 1994;22:137–144. [PMC free article: PMC307763] [PubMed: 7510065]
  198. Kohlstaedt L.A., Steitz T.A. Reverse transcriptase of human immunodeficiency virus can use either human tRNA3 lys or Escherichia coli tRNA4 gln as a primer in an in vitro primer-utilization assay. Proc. Natl. Acad. Sci. 1992;89:9652–9656. [PMC free article: PMC50190] [PubMed: 1384059]
  199. Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992;256:1783–1790. [PubMed: 1377403]
  200. Kohlstaedt L.A., Wang J., Rice P.A., Friedman J.M., Steitz T.A. 1993. The structure of HIV-1 reverse transcriptase In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 223–249. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  201. Kopchick J.J., Jamjoom G.A., Watson K.F., Arlinghaus R.B. Biosynthesis of reverse transcriptase from Rauscher murine leukemia virus by synthesis and cleavage of a gag-pol readthrough viral precursor protein. Proc. Natl. Acad. Sci. 1978;75:2016–2020. [PMC free article: PMC392474] [PubMed: 77022]
  202. Koppe B., Menendez-Arias L., Oroszlan S. Expression and purification of the mouse mammary tumor virus gag-pro transframe protein p30 and characterization of its dUTPase activity. J. Virol. 1994;68:2313–2319. [PMC free article: PMC236707] [PubMed: 8139016]
  203. Kotewicz M.L., Sampson C.M., D'Alessio J.M., Gerard G.F. Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribunuclease H activity. Nucleic Acids Res. 1988;16:3539–3543.
  204. Krug M.S., Berger S.L. Ribonuclease H activities associated with viral reverse transcriptases are endonucleases. Proc. Natl. Acad. Sci. 1989;86:3539–3543. [PMC free article: PMC287173] [PubMed: 2471188]
  205. Kulkosky J., Katz R.A., Skalka A.M. Terminal nucleotides of the preintegrative linear form of HIV-1 DNA deduced from the sequence of circular DNA junctions. J. Acquired Immune Defic. Syndr. 1990;3:852–858. [PubMed: 2384863]
  206. Kulpa D., Topping R., Telesnitsky A. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcription errors. EMBO J. (in press) 1997 [PMC free article: PMC1169686] [PubMed: 9049314]
  207. Kung H., Fung Y., Majors J., Bishop J., Varmus H. Synthesis of plus strands of retroviral DNA in cells infected with avian sarcoma virus and mouse mammary tumor virus. J. Virol. 1981;37:127–138. [PMC free article: PMC170989] [PubMed: 6260968]
  208. Kunkel T.A. The mutational specificity of DNA polymerase-β during in vitro DNA synthesis. J. Biol. Chem. 1985;260:5787–5796. [PubMed: 3988773]
  209. Kupiec J.-J., Tobaly-Tapiero J., Canivet M., Santilla-Hayat M., Flugel R.M., Peries J., Emanoil-Ravier R. Evidence for a gapped linear duplex DNA intermediate in the replicative cycle of human and simian spumaviruses. Nucleic Acid Res. 1988;16:9557–9565. [PMC free article: PMC338763] [PubMed: 2847117]
  210. Larder B.A., Purifoy D.J.M., Powell K.L., Darby G. Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 1987;327:716–717. [PubMed: 2439916]
  211. Lauermann V., Boeke J. The primer tRNA sequence is not inherited during Ty1 retrotransposition. Proc. Natl. Acad. Sci. 1994;91:9847–9851. [PMC free article: PMC44914] [PubMed: 7937903]
  212. Lederer H., Schatz O., May R., Crespi H., Darlix J.L., Le Grice S.F.J., Heumann H. Domain structure of the human immunodeficiency virus reverse transcriptase. EMBO J. 1992;11:1131–1139. [PMC free article: PMC556555] [PubMed: 1372248]
  213. Lee Y.M.H., Coffin J.M. Relationship of avian retrovirus DNA synthesis to integration in vitro. Mol. Cell Biol. 1991;11:1419–1430. [PMC free article: PMC369417] [PubMed: 1847499]
  214. Le Grice S.F.J., Naas T., Wohlgensinger B., Schatz O. Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J. 1991;10:3905–3911. [PMC free article: PMC453128] [PubMed: 1718745]
  215. Leider J.M., Palese P., Smith F.I. Determination of the mutation rate of a retrovirus. J. Virol. 1988;62:3084–3091. [PMC free article: PMC253424] [PubMed: 2841464]
  216. Leis J., Hurwitz J. RNA-dependent DNA polymerase activity of RNA tumor viruses. II. Directing influence of RNA in the reaction. J. Virol. 1972;9:130–142. [PMC free article: PMC356271] [PubMed: 4333539]
  217. Leis J., Aiyar A., Cobrinik D. 1993. Regulation of initiation of reverse transcription of retroviruses In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 33–48. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  218. Leis J.P., Berkower I., Hurwitz J. Mechanism of action of ribonuclease H isolated from avian myeloblastosis virus and Escherichia coli. Proc. Natl. Acad. Sci. 1973;70:466–470. [PMC free article: PMC433284] [PubMed: 4119789]
  219. Lerner D.L., Wagaman P.C., Phillips T.R., Prospero-Garcia O., Henriksen S.J., Fox H.S., Bloom F.E., Elder J.H. Increased mutation frequency of FIV lacking functional deoxyuridine-triphosphatase. Proc. Natl. Acad. Sci. 1995;92:7480–7484. [PMC free article: PMC41363] [PubMed: 7638216]
  220. Levin J.G., Hatfield D.L., Oroszlan S., Rein A. 1993. Mechanisms of translational suppression used in the biosynthesis of reverse transcriptase In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 5–31. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  221. Levin J.G., Crouch R.J., Post K., Hu S.C., McKelvin D., Zweig M., Court D.L., Gerwin B.I. Functional organization of the murine leukemia virus reverse transcriptase: Characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity. J. Virol. 1988;62:4376–4380. [PMC free article: PMC253878] [PubMed: 2459414]
  222. Li X., Mak J., Arts E.J., Gu Z., Kleiman L., Wainberg M.A., Parniak M.A. Effects of alterations of primer-binding site sequences on human immunodeficiency virus type-1 replication. J. Virol. 1994;68:6198–6206. [PMC free article: PMC237039] [PubMed: 7521916]
  223. Linial M., Miller A.D. Retroviral RNA packaging: Sequence requirements and implications. Curr. Top. Microbiol. Immunol. 1990;157:125–152. [PubMed: 2394131]
  224. Linial M., Medeiros E., Hayward W.S. An avian oncovirus mutant (SE21Q1b) deficient in genomic RNA: Biological and biochemical characterization. Cell. 1978;15:1371–1381. [PubMed: 83199]
  225. Lobel L.I., Goff S.P. Reverse transcription of retroviral genomes: Mutations in the terminal repeats. J. Virol. 1985;53:447–455. [PMC free article: PMC254656] [PubMed: 2578571]
  226. Loeb L.A., Kunkel T.A. Fidelity of DNA synthesis. Annu. Rev. Biochem. 1982;52:429–457. [PubMed: 6214209]
  227. Lori F., di Marzo Veronese F., De Vico A.L., Lusso P., Reitz M.S. Jr., Gallo R.C. Viral DNA carried by human immunodeficiency virus type 1 virions. J. Virol. 1992;66:5067–5074. [PMC free article: PMC241368] [PubMed: 1378514]
  228. Lowe D.M., Parmar V., Kemp S.D., Larder B.A. Mutational analysis of two conserved sequence motifs in HIV-1 reverse transcriptase. FEBS Lett. 1991;282:231–234. [PubMed: 1709876]
  229. Luban J., Bossolt K.L., Franke E.K., Kalpana G.V., Goff S.P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilin A and B. Cell. 1993;73:1067–1078. [PubMed: 8513493]
  230. Lund A.H., Duch M., Lovmand J., Jorgensen P., Pedersen F.S. Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication. J. Virol. 1993;67:7125–7130. [PMC free article: PMC238174] [PubMed: 7693968]
  231. Luo G.X., Taylor J. Template switching by reverse transcriptase during DNA synthesis. J. Virol. 1990;64:4321–4328. [PMC free article: PMC247899] [PubMed: 1696639]
  232. Luo G., Sharmeen L., Taylor J. Specificities involved in the initiation of retroviral plus-strand DNA. J. Virol. 1990;64:592–597. [PMC free article: PMC249148] [PubMed: 1688626]
  233. Majumdar C., Abbots J., Broder S., Wilson S.H. Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady state kinetics, processivity, and polynucleotide inhibition. J. Biol. Chem. 1988;263:15657–15665. [PubMed: 2459125]
  234. Mak J., Jiang M., Wainberg M.A., Hammarskjold M.-L., Rekosh D., Kleiman L. Role of Pr160gag-pol in mediating the selective incorporation of tRNAlys into human immunodeficiency virus type 1 particles. J. Virol. 1994;68:2065–2072. [PMC free article: PMC236680] [PubMed: 7511167]
  235. Makris A., Patriotis C., Bear S.E., Tsichlis P.N. Structure of a Moloney murine leukemia virus-virus-like 30 recombinant: Implications for transduction of the c-Ha-ras proto-oncogene. J. Virol. 1993;67:1286–1291. [PMC free article: PMC237495] [PubMed: 8437216]
  236. Mansky L.M., Temin H.M. Lower mutation rate of bovine leukemia virus relative to that of spleen necrosis virus. J. Virol. 1994;68:494–499. [PMC free article: PMC236310] [PubMed: 8254760]
  237. Martin J.L., Wilson J.E., Furfine E.S., Hopkins S.E., Furman P.A. Biochemical analysis of human immunodeficiency virus-1 reverse transcriptase containing a mutation at position lysine 263. J. Biol. Chem. 1993;268:2565–2570. [PubMed: 7679098]
  238. Mellors J.W., Larder B.A., Schinazi R.F. Mutations in HIV-1 reverse transcriptase and protease associated with drug resistance. Int. Antiviral News. 1995;3:8–11.
  239. Meric C., Spahr P.-F. Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. J. Virol. 1986;60:450–459. [PMC free article: PMC288912] [PubMed: 2430109]
  240. Miller M.D., Wang B., Bushman F.D. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J. Virol. 1995;69:3938–3944. [PMC free article: PMC189122] [PubMed: 7745750]
  241. Mitra S.W., Goff S., Gilboa E., Baltimore D. Synthesis of a 600-nt long plus strand DNA (plus strong stop DNA) by virions of Moloney murine leukemia virus. Proc. Natl. Acad. Sci. 1979;76:4355–4359. [PMC free article: PMC411573] [PubMed: 92028]
  242. Mizrahi V. Analysis of the ribonuclease H activity of HIV-1 reverse transcriptase using RNA·DNA hybrid substrates derived from the gag region of HIV-1. Biochemistry. 1989;28:9088–9094. [PubMed: 2481501]
  243. Mizrahi V., Usdin M.T., Harington A., Dudding L.R. Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase. Nucleic Acids Res. 1990;18:5359–5363. [PMC free article: PMC332210] [PubMed: 1699202]
  244. Mizrahi V., Lazarus G.M., Miles L.M., Meyers C.A., Debouck C. Recombinant HIV-1 reverse transcriptase: Purification, primary structure, and polymerase/ribonuclease H activities. Arch. Biochem. Biophys. 1989;273:347–358. [PubMed: 2476069]
  245. Moelling K., Bolognesi D.P., Bauer W., Busen W., Passman H.W., Hausen P. Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA:DNA hybrids. Nature. 1971;234:240–243. [PubMed: 4331605]
  246. Monk R.J., Malik F.G., Stokesberry D., Evans L.H. Direct determination of the point mutation rate of a murine retrovirus. J. Virol. 1992;66:3683–3689. [PMC free article: PMC241152] [PubMed: 1316475]
  247. Mueller B., Restle T., Kuehnel H., Goody R.S. Expression of the heterodimeric form of human immunodeficiency virus type 2 reverse transcriptase in Escherichia coli and characterization of the enzyme. J. Biol. Chem. 1991;266:14709–14713. [PubMed: 1713589]
  248. Mueller B., Restle T., Weiss S., Gautel M., Sczakiel G., Goody R.S. Coexpression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli. J. Biol. Chem. 1989;264:13975–13978. [PubMed: 2474539]
  249. Muesing M.A., Smith D.H., Capon D.J. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell. 1987;48:691–701. [PubMed: 3643816]
  250. Muriaux D., Girard P.M., Bonnet-Mathoniere B., Paoletti J. Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5′ leader region is evidenced by an antisense oligonucleotide. J. Biol. Chem. 1995;270:8209–8216. [PubMed: 7713927]
  251. Murti K.G., Boundurant M., Tereba A. Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy. J. Virol. 1981;37:411–419. [PMC free article: PMC171018] [PubMed: 6260992]
  252. Myers G., Pavlikis G.N. 1992. Evolutionary potential of complex retroviruses In The retroviridae (ed. J.A. Levy), pp. 51–105. Plenum Press, New York.
  253. Nagy K., Young M., Baboonian C., Merson J., Whittle P., Oroszlan S. Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: Evidence for a role of protease in the early phase. J. Virol. 1994;68:757–765. [PMC free article: PMC236512] [PubMed: 8289379]
  254. Nakamura H., Oda Y., Iwai S., Inoue H., Ohtsuka E., Kanaya S., Kimura S., Katsuda C., Katayanagi K., Morikawa K., Miyashiro H., Ikehara M. How does RNase H recognize a DNA·RNA hybrid? Proc. Natl. Acad. Sci. 1991;88:11535–11539. [PMC free article: PMC53170] [PubMed: 1662398]
  255. Nanni R.G., Ding J., Jacobo-Molina A., Hughes S.H., Arnold E. Review of HIV-1 reverse transcriptase three-dimensional structure: Iimplications for drug design. Perspect. Drug Discov. Des. 1993;1:129–150.
  256. Nilsen T.W., Maroney P.A., Goodwin R.G., Rottman F.M., Crittenden L.B., Raines M.A., Kung H. c-erbB activation in ALV-induced erythroblastosis: Novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell. 1985;41:719–726. [PubMed: 2988784]
  257. O'Brien W.A., Namazi A., Kalhor H., Mao S.H., Zack J.A., Chen I.S. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J. Virol. 1994;68:1258–1263. [PMC free article: PMC236573] [PubMed: 7507180]
  258. Oda Y., Yoshida M., Kanaya S. Role of histidine 124 in the catalytic function of ribonuclease H1 from Escherichia coli. J. Biol. Chem. 1993;268:88–92. [PubMed: 8380173]
  259. Olsen J.C., Bova-Hill C., Grandgenett D.P., Quinn T.P., Manfredi J.P., Swanstrom R. Rearrangements in unintegrated retroviral DNA are complex and are the result of multiple genetic determinants. J. Virol. 1990;64:5475–5484. [PMC free article: PMC248599] [PubMed: 2170682]
  260. Omer C.A., Faras A.J. Mechanism of release of the avian retrovirus tRNAtrp primer molecule from viral DNA by ribonuclease H during reverse transcription in vitro. Cell. 1982;30:797–805. [PubMed: 6183006]
  261. Oppermann H., Bishop J.M., Varmus H.E., Levintow L. A joint product of the genes gag and pol of avian sarcoma virus: A possible precursor of reverse transcriptase. Cell. 1977;12:993–1005. [PubMed: 74287]
  262. Oyama F., Kikuchi R., Crouch R.J., Uchida T. Intrinsic properties of reverse transcriptase in reverse transcription: Associated RNase H is essentially regarded as an endonuclease. J. Biol. Chem. 1989;264:18808–18817. [PubMed: 2478553]
  263. Panet A., Berliner H. Binding of tRNA to reverse transcriptase of RNA tumor viruses. J. Virol. 1978;26:214–220. [PMC free article: PMC354057] [PubMed: 77907]
  264. Panet A., Haseltine W.A., Baltimore D., Peters G., Harada F., Dahlberg J.E. Specific binding of tRNAtrp to avian myeloblastosis virus RNA-dependent DNA polymerase. Proc. Natl. Acad. Sci. 1975;72:2535–2539. [PMC free article: PMC432803] [PubMed: 52156]
  265. Panganiban A.T., Fiore D. Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science. 1988;241:1064–1069. [PubMed: 2457948]
  266. Patarca R., Haseltine W.A. Sequence similarities among retroviruses. Nature. 1984;309:728. [PubMed: 6203043]
  267. Patel P.H., Preston B.D. Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends. Proc. Natl. Acad. Sci. 1994;91:549–553. [PMC free article: PMC42986] [PubMed: 7507249]
  268. Patel P.H., Jacobo-Molina A., Ding J., Tantillo C., Clark A.D. Jr., Raag R., Nanni R.G., Hughes S.H., Arnold E. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Biochemistry. 1995;34:5351–5363. [PubMed: 7537090]
  269. Pathak V.K., Temin H.M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: Substitutions, frameshifts and hypermutations. Proc. Natl. Acad. Sci. 1990a;87:6019–6023. [PMC free article: PMC54463] [PubMed: 2201018]
  270. Pathak V.K., Temin H.M. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: Deletions and deletions with insertions. Proc. Natl. Acad. Sci. 1990b;87:6024–6028. [PMC free article: PMC54464] [PubMed: 2166940]
  271. Pathak V.K., Temin H.M. 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate. J. Virol. 1992;66:3093–3100. [PMC free article: PMC241071] [PubMed: 1373201]
  272. Peliska J.A., Benkovic S.J. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 1992;258:1112–1118. [PubMed: 1279806]
  273. Peliska J.A., Benkovic S.J. Fidelity of in vitro DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Biochemistry. 1994;33:3890–3895. [PubMed: 7511410]
  274. Peliska J.A., Balasubramanian S., Giedroc D.P., Benkovic S.J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalyzed DNA strand transfer reactions and modulates RNaseH activity. Biochemistry. 1994;33:13817–13823. [PubMed: 7524664]
  275. Pelletier H., Sawaya M.R., Kuman A., Wilson S.H., Kraut J. Structures of ternary complexes of rat DNA polymerase b, a DNA template-primer, and ddCTP. Science. 1994;264:1891–1903. [PubMed: 7516580]
  276. Perrino F.W., Preston B.D., Sandell L.L., Loeb L.A. Extension of mismatched 3′ termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. 1989;86:8343–8347. [PMC free article: PMC298277] [PubMed: 2479023]
  277. Peters G.G., Glover C. tRNAs and priming of RNA-directed DNA synthesis in mouse mammary tumor virus. J. Virol. 1980;35:31–40. [PMC free article: PMC288780] [PubMed: 6157839]
  278. Peters G.G., Hu J. Reverse transcriptase as the major determinant for selective packaging of tRNA's into avian sarcoma virus particles. J. Virol. 1980;36:692–700. [PMC free article: PMC353697] [PubMed: 6162035]
  279. Peters G., Harada F., Dahlberg J.E., Panet A., Haseltine W.A., Baltimore D. Low-molecular weight RNAs of Moloney murine leukemia virus: Identification of the primer for RNA-directed DNA synthesis. J. Virol. 1977;21:1031–1041. [PMC free article: PMC515643] [PubMed: 66325]
  280. Poch O., Sauvaget I., Delarue M., Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989;8:3867–3874. [PMC free article: PMC402075] [PubMed: 2555175]
  281. Prasad V.R., Goff S.P. Linker insertion mutagenesis of human immunodeficiency virus reverse transcriptase expressed in bacteria: Definition of the minimal polymerase domain. Proc. Natl. Acad. Sci. 1989;86:3104–3108. [PMC free article: PMC287073] [PubMed: 2470090]
  282. Prasad V.R., Lowy I., de los Santos T., Chiang L., Goff S.P. Isolation and characterization of dideoxyguanosine triphosphate-resistant mutant of human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. 1991;88:11363–11367. [PMC free article: PMC53135] [PubMed: 1722328]
  283. Prats A.-C., Sarih L., Gabus C., Litvak S., Keith G., Darlix J.-L. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO J. 1988;7:1777–1783. [PMC free article: PMC457168] [PubMed: 2458920]
  284. Prats A., Housset V., de Billy G., Cornille F., Prats H., Roques B., Darlix J. Viral RNA annealing activities of the nucleocapsid protein of Moloney murine leukemia virus are zinc independent. Nucleic Acids Res. 1991;19:3533–3541. [PMC free article: PMC328376] [PubMed: 1906602]
  285. Preston B.D., Poiesz B.J., Loeb L.A. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242:1168–1171. [PubMed: 2460924]
  286. Pullen K.A., Ishimoto L.K., Champoux J.J. Incomplete removal of the RNA primer for minus-strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 1992;66:367–373. [PMC free article: PMC238296] [PubMed: 1370087]
  287. Pullen K.A., Rattray A.J., Champoux J.J. The sequence features important for plus strand priming by human immunodeficiency virus reverse transcriptase. J. Biol. Chem. 1993;268:6221–6227. [PubMed: 7681062]
  288. Pulsinelli G.A., Temin H.M. High rate of mismatch extension during reverse transcription in a single round of retrovirus replication. Proc. Natl. Acad. Sci. 1994;91:9490–9494. [PMC free article: PMC44838] [PubMed: 7524077]
  289. Raines M.A., Maihle N.J., Moscovici C., Crittenden L., Kung H.-J. Mechanisms of c-erbB transduction: Newly released transducing viruses retain poly(A) tracts of erbB transcripts and encode C-terminally intact erbB proteins. J. Virol. 1988;62:2437–2443. [PMC free article: PMC253402] [PubMed: 2897475]
  290. Ramsey C.A., Panganiban A.T. Replication of the retroviral terminal repeat sequence during in vivo reverse transcription. J. Virol. 1993;67:4114–4121. [PMC free article: PMC237780] [PubMed: 7685409]
  291. Ratner L., Haseltine W., Patarca R., Livak K.L., Starcich B., Josephs S., Duran D.R., Rafalski J.A., Whitehorn E.A., Baumeister K., Ifvanoff L., Petteway S.R., Pearson M.L., Lautenberger J.A., Papas T.S., Ghrayeb J., Chang N.T., Gallo R.C., Wong-Staal F. Complete nucleotide sequences of the AIDS virus, HTLV-III. Nature. 1985;313:277–284. [PubMed: 2578615]
  292. Rattray A.J., Champoux J.J. The role of Moloney murine leukemia virus RNAse H activity in the formation of plus-strand primers. J. Virol. 1987;61:2843–2851. [PMC free article: PMC255801] [PubMed: 3039172]
  293. Rattray A.J., Champoux J.J. Plus-strand priming by Moloney murine leukemia virus. The sequence features important for cleavage by RNAse H. J. Mol. Biol. 1989;208:445–456. [PubMed: 2477553]
  294. Reardon J.E. Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization. J. Biol. Chem. 1993;268:8743–8751. [PubMed: 7682554]
  295. Reardon J.E., Furfine E.S., Cheng N. Human immunodeficiency virus reverse transcriptase: Effect of primer length on template-primer binding. J. Biol. Chem. 1991;266:14128–14134. [PubMed: 1713216]
  296. Reicin A., Öhagen ., Yin. S. Höglund L., Goff S.P. The role of Gag in HIV-1 virion morphogenesis and early steps in the viral life cycle. J. Virol. 1996;70:8645–8652. [PMC free article: PMC190958] [PubMed: 8970990]
  297. Rein A. Retroviral RNA packaging: A review. Arch. Virol. Suppl. 1994;9:513–522. [PubMed: 8032280]
  298. Ren J., Esnouf R., Garman E., Somers D., Ross C., Kirby I., Keeling J., Darby G., Jones Y., Stuart D., Stammers D. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Struct. Biol. 1995;2:293–302. [PubMed: 7540934]
  299. Repaske R., Hartley J.W., Kavlick M.F., O'Neill R.R., Austin J.B. Inhibition of RNAse H activity and viral replication by single mutations in the 3′ region of Moloney murine leukemia virus reverse transcriptase. J. Virol. 1989;63:1460–1464. [PMC free article: PMC247852] [PubMed: 2464706]
  300. Resnick R., Omer C.A., Faras A.J. Involvement of retrovirus reverse transcriptase-associated RNase H in the initiation of strong-stop (+) DNA synthesis and the generation of the long terminal repeat. J. Virol. 1984;51:813–821. [PMC free article: PMC255849] [PubMed: 6206236]
  301. Rhim H., Park J., Morrow C.D. Deletions in the tRNA-lys primer-binding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. J. Virol. 1991;65:4555–4564. [PMC free article: PMC248909] [PubMed: 1714513]
  302. Ricchetti M., Buc H. Reverse transcriptases and genomic variability: The accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J. 1990;9:1583–1593. [PMC free article: PMC551854] [PubMed: 1691709]
  303. Roberts J.D., Bebenek K., Kunkel T.A. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242:1171–1173. [PubMed: 2460925]
  304. Roberts J.D., Preston B.D., Johnston L.A., Soni A., Loeb L.A., Kunkel T. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol. Cell. Biol. 1989;9:469–476. [PMC free article: PMC362622] [PubMed: 2469002]
  305. Rodgers D.W., Gamblin S.J., Harris B.A., Ray S., Culp J.S., Hellmig B., Woolf D.J., Debouck C., Harrison S.C. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. 1995;92:1222–1226. [PMC free article: PMC42671] [PubMed: 7532306]
  306. Roth M.J., Schwartzberg P.L., Goff S.P. Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence. Cell. 1989;58:47–54. [PubMed: 2546673]
  307. Rothenberg E., Baltimore D. Synthesis of long representative DNA copies of the murine RNA tumor virus genome. J. Virol. 1976;17:168–174. [PMC free article: PMC515400] [PubMed: 54441]
  308. Rothenberg E., Smotkin D., Baltimore D., Weinberg R.A. in vitro synthesis of infectious DNA of murine leukemia virus. Nature. 1977;269:122–126. [PubMed: 71657]
  309. Salazar M., Fedoroff O.Y., Miller J.M., Ribeiro N.S., Reid B.R. The DNA strand in DNA·RNA hybrid duplexes is neither B-form nor A-form in solution. Biochemistry. 1993;32:4207–4215. [PubMed: 7682844]
  310. Sarih-Cottin L., Bordier B., Musier-Forsyth K., Andreola M., Barr P.J., Litvak S. Preferential interaction of human immunodeficiency virus reverse transcriptase with two regions of primer tRNAlys as evidenced by footprinting studies and inhibition with synthetic oligonucleotides. J. Mol. Biol. 1992;226:1–6. [PubMed: 1377751]
  311. Schatz O., Mous J., Grice S.F.J. Le. HIV-1 reverse transcriptase-associated ribonuclease H displays both endonuclease and 3′-5′ exonuclease activity. EMBO J. 1990;9:1171–1176. [PMC free article: PMC551793] [PubMed: 1691093]
  312. Schatz O., Cromme F.V., Gruninger-Leitch F., Grice S.F. Le. Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function. FEBS Lett. 1989;257:311–314. [PubMed: 2479577]
  313. Schulein M., Burnette W.N., August J.T. Stoichiometry and specificity of binding of Rauscher oncovirus 10,000-dalton (p10) structural protein to nucleic acids. J. Virol. 1978;26:54–60. [PMC free article: PMC354033] [PubMed: 650738]
  314. Schwartz D.E., Zamecnick P.C., Weith H.L. Rous sarcoma virus genome is terminally redundant: The 3′ end sequence. Proc. Natl. Acad. Sci. 1977;74:994–998. [PMC free article: PMC430560] [PubMed: 66684]
  315. Schwartz O., Marechal V., Danos O., Heard J.-M. Human immunodefiency virus type 1 nef increases the efficiency of reverse transcription in the infected cell. J. Virol. 1995;69:4053–4059. [PMC free article: PMC189139] [PubMed: 7539505]
  316. Schwartzberg P., Colicelli J., Gordon M.L., Goff S.P. Mutations in the gag gene of Moloney murine leukemia virus: Effects on production of virus and reverse transcriptase. J. Virol. 1984;49:918–924. [PMC free article: PMC255554] [PubMed: 6199513]
  317. Setlik R.F., Meyer D.J., Shibata M., Roskwitalski R., Ornstein R.L., Rein R. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate. J. Biomol. Struct. Dyn. 1994;12:37–60. [PubMed: 22671907]
  318. Shields A., Witte O.N., Rothenberg E., Baltimore D. High frequency of abberant expression of Moloney murine leukemia virus in clonal infections. Cell. 1978;14:601–609. [PubMed: 80281]
  319. Shank P.R., Hughes S.H., Kung H.J., Majors J.E., Quintrell N., Guntaka R.V., Bishop J.M., Varmus H.E. Mapping unintegrated avian sarcoma virus DNA: Termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell. 1978;15:1383–1395. [PubMed: 215324]
  320. Shimada M., Hosaka H., Takaku H., Smith J.S., Roth M.J., Inouye S., Inouye M. Specificity of priming reaction of HIV-1 reverse transcriptase, 2′-OH or 3′-OH. J. Biol. Chem. 1994;269:3925–3927. [PubMed: 7508435]
  321. Skalka A.M., Goff S.P. 1993. Reverse transcriptase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  322. Smerdon S.J., Jager J., Wang J., Kohlstaedt L.A., Chirino A.J., Friedman J.M., Rice P.A., Steitz T.A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. 1994;91:3911–3915. [PMC free article: PMC43692] [PubMed: 7513427]
  323. Smith B.J., Bailey J.M. The binding of an avian myeloblastosis virus basic 12,000 dalton protein to nucleic acids. Nucleic Acids Res. 1979;7:2055–2072. [PMC free article: PMC342366] [PubMed: 231768]
  324. Smith J.K., Cywinski A., Taylor J.M. Initiation of plus-strand DNA synthesis during reverse transcription of an avian retrovirus genome. J. Virol. 1984a;49:200–204. [PMC free article: PMC255442] [PubMed: 6197536]
  325. Smith J.K., Cywinski A., Taylor J.M. Specificity of initiation of plus-strand DNA by Rous sarcoma virus. J. Virol. 1984b;52:314–319. [PMC free article: PMC254528] [PubMed: 6092661]
  326. Smith J.S., Roth M.J. Specificity of human immunodeficiency virus type-associated ribonuclease H in removal of the minus-strand primer tRNA (Lys 3) J. Biol. Chem. 1992;267:15071–15079. [PubMed: 1378844]
  327. Smith J.S., Roth M.J. Purification and characterization of an active human immunodeficiency virus type I RNase H domain. J. Virol. 1993;67:4037–4049. [PMC free article: PMC237771] [PubMed: 7685407]
  328. Smith J.S., Kim S., Roth M.J. Analysis of long terminal repeat circle junctions of human immunodeficiency virus type 1. J. Virol. 1990;64:6286–6290. [PMC free article: PMC248807] [PubMed: 2243394]
  329. Smith J.S., Gritsman K., Roth M.J. Contributions of DNA polymerase subdomains to the RNaseH activity of human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 1994;68:5721–5729. [PMC free article: PMC236975] [PubMed: 7520094]
  330. Soltis D., Skalka A.M. The α and β chains of avian retrovirus reverse transcriptase independently expressed in E. coli: Characterization of enzymatic activities. Proc. Natl. Acad. Sci. 1988;85:3372–3376. [PMC free article: PMC280211] [PubMed: 2453057]
  331. Sousa R., Rose J., Wang B.C. The thumb's knuckle. Flexibility in the thumb subdomain of T7 RNA polymerase is revealed by the structure of a chimeric T7/T3 RNA polymerase. J. Mol. Biol. 1994;244:6–12. [PubMed: 7966322]
  332. Sousa R., Chung Y.J., Rose J.P., Wang B.C. Crystal structure of T7 RNA polymerase ar 3.3 Å resolution. Nature. 1993;364:593–599. [PubMed: 7688864]
  333. Sova P., Volsky D.J. Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J. Virol. 1993;67:6322–6326. [PMC free article: PMC238061] [PubMed: 8371360]
  334. Stahl S.J., Kaufman J.D., Vikic-Topic S., Crouch R.J., Wingfield P.T. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Protein Eng. 1994;7:1103–1108. [PubMed: 7530360]
  335. Stavnezer E., Brodeur D., Brennan L.A. The v-ski oncogene encodes a truncated set of c-ski coding exons with limited sequence and structural relatedness to v-myc. Mol. Cell. Biol. 1989;9:4038–4045. [PMC free article: PMC362468] [PubMed: 2674685]
  336. Steitz T.A., Steitz J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. 1993;90:6498–6502. [PMC free article: PMC46959] [PubMed: 8341661]
  337. Steitz T.A., Smerdon S.J., Jager J., Joyce C.M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science. 1994;266:2022–2025. [PubMed: 7528445]
  338. Stoll E., Billeter M.A., Palmenberg A., Weissmann C. Avian myeloblastosis virus RNA is terminally redundant: Implications for the mechanism of retrovirus replication. Cell. 1977;12:57–72. [PubMed: 198142]
  339. Strambio-deCastillia C., Hunter E. Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis. J. Virol. 1992;66:7021–7032. [PMC free article: PMC240357] [PubMed: 1279197]
  340. Stuhlmann H., Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J. Virol. 1992;66:2378–2388. [PMC free article: PMC289033] [PubMed: 1372369]
  341. Stuhlmann H., Dieckmann M., Berg P. Transduction of cellular neo mRNA by retrovirus-mediated recombination. J. Virol. 1990;64:5783–5796. [PMC free article: PMC248730] [PubMed: 1700824]
  342. Swain A., Coffin J.M. Polyadenylation at correct sites in genome RNA is not required for retrovirus application or genome encapsidation. J. Virol. 1989;63:3301–3306. [PMC free article: PMC250902] [PubMed: 2473216]
  343. Swain A., Coffin J.M. Mechanism of transduction by retroviruses. Science. 1992;255:841–845. [PubMed: 1371365]
  344. Swanstrom R., Varmus H.E., Bishop J.M. The terminal redundancy of the retroviral genome facilitates chain elongation by reverse transcriptase. J. Biol. Chem. 1981;256:1115–1121. [PubMed: 6161131]
  345. Swanstrom R., Parker R.C., Varmus H.E., Bishop J.M. Transduction of a cellular oncogene: The genesis of Rous sarcoma virus. Proc. Natl. Acad. Sci. 1983;80:2519–2524. [PMC free article: PMC393857] [PubMed: 6302692]
  346. Takeuchi Y., Nagumo T., Hoshino H. Low fidelity of cell-free DNA synthesis by reverse transcriptase of human immunodeficiency virus. J. Virol. 1988;62:3900–3902. [PMC free article: PMC253542] [PubMed: 2458489]
  347. Tanese N., Goff S.P. Domain structure of the Moloney MuLV reverse transcriptase: Mutational analysis and separate expression of the polymerase and RNAse H activities. Proc. Natl. Acad. Sci. 1988;85:1777–1781. [PMC free article: PMC279862] [PubMed: 2450347]
  348. Tanese N., Roth M., Goff S.P. Expression of enzymatically active reverse transcriptase in E. coli. Proc. Natl. Acad. Sci. 1985;82:4944–4948. [PMC free article: PMC390474] [PubMed: 2410910]
  349. Tanese N.T., Telesnitsky A., Goff S.P. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J. Virol. 1991;65:4387–4397. [PMC free article: PMC248878] [PubMed: 1712862]
  350. Tanese N., Sodroski J., Haseltine W., Goff S.P. Expression of reverse transcriptase activity from human T-lymphotropic virus type III in Escherichia coli. J. Virol. 1986;59:743–745. [PMC free article: PMC253253] [PubMed: 2426471]
  351. Tantillo C., Ding J., Jacobo-Molina A., Nanni R.G., Boyer P.L., Hughes S.H., Pauwels R., Andries K., Janssen P.A.J., Arnold E. Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. J. Mol. Biol. 1994;243:369–387. [PubMed: 7525966]
  352. Taylor J.M. An analysis of the role of tRNA species as primers for the transcription into DNA of RNA tumor virus genomes. Biochim. Biophys. Acta. 1977;473:57–71. [PubMed: 66067]
  353. Telesnitsky A., Goff S.P. 1993a. Strong stop strand transfer during reverse transcription In Reverse transcriptase (ed. A.M. Skalka and S.P. Goff), pp. 49–84. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  354. Telesnitsky A., Goff S.P. Two defective forms of reverse transcriptase can complement to restore retroviral infectivity. EMBO J. 1993b;12:4433–4438. [PMC free article: PMC413742] [PubMed: 7693456]
  355. Telesnitsky A., Blain S.W., Goff S.P. Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli ribonuclease H. J. Virol. 1992;66:615–622. [PMC free article: PMC240759] [PubMed: 1370551]
  356. Temin H.M. Retrovirus variation and reverse transcription: Abnormal strand transfers result in retrovirus genetic variation. Proc. Natl. Acad. Sci. 1993;90:6900–6903. [PMC free article: PMC47042] [PubMed: 7688465]
  357. Temin H., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226:1211–1213. [PubMed: 4316301]
  358. Thali M., Bukovsky A., Kondo E., Rosenwirth B., Walsh C.T., Sodroski J., Gottlinger H.G. Functional association of cyclophilin A with HIV-1 virions. Nature. 1994;372:363–365. [PubMed: 7969495]
  359. Threadgill D.S., Steagall W.K., Flaherty M.T., Fuller F.J., Perry S.T., Rushlow K.E., Le Grice S.F., Payne S.L. Characterization of equine infectious anemia virus dUTPase: Growth properties of a dUTPase-deficient mutant. J. Virol. 1993;67:2592–2600. [PMC free article: PMC237580] [PubMed: 8386267]
  360. Tisdale M., Schulze T., Larder B.A., Moelling K. Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. J. Gen. Virol. 1991;72:59–66. [PubMed: 1703563]
  361. Tobaly-Tapiero J., Kupiec J.-J., Santilla-Hayat M., Canivet M., Peries J., Emanoil-Ravier R. Further characterization of the gapped DNA intermediate of human spumavirus: Evidence for a dual initiation of plus-strand DNA synthesis. J. Gen. Virol. 1991;72:605–608. [PubMed: 1848594]
  362. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J. Virol. 1992;66:4893–4900. [PMC free article: PMC241327] [PubMed: 1378513]
  363. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. 1992;89:6988–6992. [PMC free article: PMC49630] [PubMed: 1379730]
  364. Unge T., Knight S., Bhikhabhai R., Lovgren S., Dauter Z., Wilson K., Strandberg B. 2.2 Å resolution structure of the amino-terminal half of HIV-1 reverse transcriptase (fingers and palm subdomains) Structure. 1994;2:953–961. [PubMed: 7532533]
  365. Varela-Echavarria A., Garvey N., Preston B.D., Dougherty J.P. Comparison of Moloney murine leukemia virus mutation rate with the fidelity of its reverse transcriptase in vitro. J. Biol. Chem. 1992;267:24681–24688. [PubMed: 1280265]
  366. Varmus H., Brown P. 1989. Retroviruses In Mobile DNA (ed. M. Howe and D. Berg), pp. 53–108. American Society for Microbiology, Washington, D.C. [PMC free article: PMC159755]
  367. Varmus H.E., Swanstrom R. 1982. Replication of retroviruses In Molecular biology of tumor viruses, 2nd edition: RNA tumor viruses (ed. R. Weiss et al.), pp. 369–512. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  368. Varmus H.E., Swanstrom R. 1985. Supplement: Replication of retroviruses In Molecular biology of tumor viruses, 2nd edition: RNA tumor viruses 2/Supplements and appendixes (ed. R. Weiss et al.), pp. 75–134. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  369. Varmus H.E., Padgett T., Heasley S., Simon G., Bishop J.M. Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell. 1977;11:307–319. [PubMed: 196759]
  370. Varmus H.E., Heasley S., Kung H.-J., Oppermann H., Smith V.C., Bishop J.M., Shank P.R. Kinetics of synthesis, structure and purification of avian sarcoma virus-specific DNA made in the cytoplasm of acutely infected cells. J. Mol. Biol. 1978;120:55–82. [PubMed: 205652]
  371. Vartanian J.-P., Meyerhans A., Asjo B., Wain-Hobson S. Selection, recombination, and G-A hypermutation of human immunodeficiency virus type 1 genomes. J. Virol. 1991;65:1779–1788. [PMC free article: PMC239985] [PubMed: 2002543]
  372. Vartanian J.P., Meyerhaus A., Sala M., Wain-Hobson S. G→A Hypermutation of the human immunodeficiency virus type 1 genome: Evidence for dCTP pool imbalance during reverse transcription. Proc. Natl. Acad. Sci. 1994;91:3092–3096. [PMC free article: PMC43521] [PubMed: 7512722]
  373. Verma I.M. Studies on reverse transcriptase of RNA tumor viruses. I. Localization of thermolabile DNA polymerase and RNase H activities on one polypeptide. J. Virol. 1975;15:121–126. [PMC free article: PMC354425] [PubMed: 46281]
  374. Verma I.M. The reverse transcriptase. Biochim. Biophys. Acta. 1977;473:1–38. [PubMed: 66065]
  375. Volkmann S., Wöhrl B.M., Tisdale M., Moelling K. Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxy-terminal amino acid residues conserved among retroviral ribonucleases H. J. Biol. Chem. 1993;268:2674–2683. [PubMed: 7679100]
  376. von Schwedler U., Song J., Aiken C., Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 1993;67:4945–4955. [PMC free article: PMC237882] [PubMed: 8331734]
  377. Wain-Hobson S. The fastest genome evolution ever described: HIV variation in situ. Curr. Opin. Genet. Dev. 1993;3:878–883. [PubMed: 7509668]
  378. Wain-Hobson S., Sonigo P., Guyader M., Gazit A., Henry M. Erratic G→A hypermutation within a complete caprine arthritis-encephalitis virus (CAEV) provirus. Virology. 1995;209:297–303. [PubMed: 7778264]
  379. Wakefield J.K., Morrow C.D. Mutations within the primer binding site of the human immunodeficiency virus type 1 define sequence requirements essential for reverse transcription. Virology. 1996;220:290–298. [PubMed: 8661380]
  380. Wakefield J.K., Rhim H., Morrow C.D. Minimal sequence requirements of a functional human immunodeficiency virus type 1 primer binding site. J. Virol. 1994;68:1605–1614. [PMC free article: PMC236618] [PubMed: 7508999]
  381. Wang J., Smerdon S.J., Jager J., Kohlstaedt L.A., Rice P.A., Friedman J.M., Steitz T.A. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc. Natl. Acad. Sci. 1994;91:7242–7246. [PMC free article: PMC44375] [PubMed: 7518928]
  382. Weber J., Grosse F. Fidelity of human immunodeficiency virus type 1 reverse transcriptase in copying natural DNA. Nucleic Acids Res. 1989;17:1379–1393. [PMC free article: PMC331810] [PubMed: 2466238]
  383. Webster T.A., Patarca R., Lathrop R., Smith T.F. Potential structural motifs for reverse transcriptases. Mol. Biol. Evol. 1989;6:317–320. [PubMed: 2482917]
  384. Wei X., Gosh S.K., Taylor M., Johnson V., Emini E., Deutsch P., Lifson J., Bonhoeffer S., Nowak M., Hahn B., Saag M., Shaw G. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995;373:117–122. [PubMed: 7529365]
  385. Weinberg R.A. Structure of the intermediates leading to the integrated provirus. Biochim. Biophys. Acta. 1977;473:39–55. [PubMed: 66066]
  386. Weiss S., Konig B., Morikawa Y., Jones I. Recombinant HIV-1 nucleocapsid protein p15 produced as a fusion protein with glutathione S-transferase in Escherichia coli mediates dimerization and enhances reverse transcription of retroviral RNA. Gene. 1992;121:203–212. [PubMed: 1280240]
  387. Weymouth L.A., Loeb L.A. Mutagenesis during in vitro DNA synthesis. Proc. Natl. Acad. Sci. 1978;75:1924–1928. [PMC free article: PMC392454] [PubMed: 347450]
  388. Whitcomb J.M., Hughes S.H. Retroviral reverse transcription and integration: Progress and problems. Annu. Rev. Cell Biol. 1992;8:275–306. [PubMed: 1282352]
  389. Whitcomb J.M., Kumar R., Hughes S.H. Sequence of the circle junction of human immunodeficiency virus type 1: Implications for reverse transcription and integration. J. Virol. 1990;64:4903–4906. [PMC free article: PMC247980] [PubMed: 1697909]
  390. Whitcomb J.M., Ortiz-Conde B.A., Hughes S.H. Replication of avian leukosis viruses with mutations at the primer binding site: Use of alternative tRNAs as primers. J. Virol. 1995;69:6228–6238. [PMC free article: PMC189520] [PubMed: 7545245]
  391. Whiting S.H., Champoux J. Strand displacement capability of Moloney murine leukemia virus reverse transcriptase. J. Virol. 1994;68:4747–4758. [PMC free article: PMC236414] [PubMed: 7518525]
  392. Williams K.J., Loeb L.A. Retroviral reverse transcriptases: Error frequencies and mutagenesis. Curr. Top. Microbiol. Immunol. 1992;176:165–180. [PubMed: 1376224]
  393. Wintersberger U. Ribonucleases H of retroviral and cellular origin. Pharmacol. Ther. 1990;48:259–280. [PubMed: 1963496]
  394. Wlodawer A., Erickson J.W. Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 1993;62:543–585. [PubMed: 8352596]
  395. Wöhrl B.M., Moelling K. Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA-DNA hybrids. Biochemistry. 1990;29:10141–10147. [PubMed: 1703002]
  396. Wöhrl B.M., Howard K.J., Jacques P.S., Grice S.F. Le. Alternative modes of polymerization distinguish the subunits of equine infectious anemia virus reverse transcriptase. J. Biol. Chem. 1994;269:8541–8548. [PubMed: 7510690]
  397. Wöhrl B.M., Tantillo C., Arnold E., LeGrice S.F.J. An expanded model of replicating human immunodeficiency virus reverse transcriptase. Biochemistry. 1995a;34:5343–5350. [PubMed: 7537089]
  398. Wöhrl B.M., Georgiadis M.M., Telesnitsky A., Hendrickson W.A., Grice S.F.-J. Le. Footprint analysis of replicating murine leukemia virus reverse transcriptase. Science. 1995b;267:96–99. [PubMed: 7528942]
  399. Wyke J.A., Bell J.G., Beamand J.A. Genetic recombination among temperature-sensitive mutants of Rous sarcoma virus. Cold Spring Harbor Symp. Quant. Biol. 1975;39:897–905. [PubMed: 169044]
  400. Xiong Y., Eickbush T.H. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, mitochondrial introns. Mol. Biol. Evol. 1988;5:675–690. [PubMed: 2464735]
  401. Xiong Y., Eickbush T.H. Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J. 1990;9:3353–3362. [PMC free article: PMC552073] [PubMed: 1698615]
  402. Xu H., Boeke J.D. High-frequency deletion between homologous sequences during retrotransposition of Ty elements in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 1987;84:8553–8557. [PMC free article: PMC299583] [PubMed: 2825195]
  403. Yang W., Steitz T.A. Recombining the structures of HIV integrase, RuvC and RNase H. Structure. 1995;3:131–134. [PubMed: 7735828]
  404. Yang W., Hendrickson W.A., Crouch R.J., Satow Y. Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein. Science. 1990;249:1398–1405. [PubMed: 2169648]
  405. You J.C., McHenry C.S. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J. Biol. Chem. 1994;269:31491–31495. [PubMed: 7989315]
  406. Youvan D.C., Hearst J.E. Reverse transcriptase pauses at N2-methylguanine during in vitro transcription of Escherichia coli 16s ribosomal RNA. Proc. Natl. Acad. Sci. 1979;76:3751–3754. [PMC free article: PMC383911] [PubMed: 91169]
  407. Yu H., Goodman M.F. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates. J. Biol. Chem. 1992;267:10888–10896. [PubMed: 1375233]
  408. Yu S.F., Baldwin D.N., Gwynn S.R., Yendapalli S., Linial M.L. Human foamy virus replication: A pathway distinct from that of retroviruses and hepadnaviruses. Science. 1996;271:1579–1582. [PubMed: 8599113]
  409. Zack J.A., Haislip A.M., Krogstad P., Chen I.S.Y. Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J. Virol. 1992;66:1717–1725. [PMC free article: PMC240919] [PubMed: 1371173]
  410. Zack J.A., Arrigo S.J., Weitsman S.R., Go A.S., Haislip A., Chen I.S.Y. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell. 1990;61:213–222. [PubMed: 2331748]
  411. Zhang J., Temin H.M. 3′ Junctions of oncogene-virus sequences and the mechanisms for formation of highly oncogenic retroviruses. J. Virol. 1993a;67:1747–1751. [PMC free article: PMC240211] [PubMed: 8445707]
  412. Zhang J., Temin H.M. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science. 1993b;259:234–238. [PubMed: 8421784]
  413. Zhang J., Temin H.M. Retrovirus recombination depends on the length of sequence identity and is not error prone. J. Virol. 1994;68:2409–2414. [PMC free article: PMC236718] [PubMed: 7511170]
  414. Zhu J., Cunningham J.M. Minus-strand DNA is present within murine type C ecotropic retroviruses prior to infection. J. Virol. 1993;67:2385–2388. [PMC free article: PMC240406] [PubMed: 7680392]
Copyright © 1997, Cold Spring Harbor Laboratory Press.
Bookshelf ID: NBK19398
PubReader format: click here to try

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to pubmed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...