NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Neuroscience

Neuroscience. 2nd edition.

Show details

Neurotransmitter Receptors Alter Postsynaptic Membrane Permeability

In 1907, the British physiologist John N. Langley introduced the concept of receptor molecules to explain the specific and potent actions of certain chemicals on muscle and nerve cells. Much subsequent work has shown that receptor molecules do indeed account for the ability of neurotransmitters, hormones, and drugs to alter the functional properties of neurons. While it has been clear since Langley's day that receptors are important for synaptic transmission, their identity and detailed mechanism of action remained a mystery until quite recently. It is now known that neurotransmitter receptors are proteins embedded in the plasma membrane of postsynaptic cells. Domains of receptor molecules that extend into the synaptic cleft bind neurotransmitters that are released into this space by the presynaptic neuron. The binding of neurotransmitters, either directly or indirectly, causes ion channels in the postsynaptic membrane to open or close (Figure 7.1). Typically, the resulting ion fluxes change the membrane potential of the postsynaptic cell, thus mediating the transfer of information across the synapse.

Figure 7.1. Receptors that mediate the postsynaptic actions of neurotransmitters have two functions.

Figure 7.1

Receptors that mediate the postsynaptic actions of neurotransmitters have two functions. First, specific binding sites on the extracellular side of receptors allow these proteins to detect the presence of neurotransmitters in the synaptic cleft. Second, (more...)

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2001, Sinauer Associates, Inc.
Bookshelf ID: NBK10951

Views

  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...