Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information

Antigen processing: Ubiquitination & Proteasome degradation

Intracellular foreign or aberrant host proteins are cleaved into peptide fragments of a precise size, such that they can be loaded on to class I MHC molecules and presented externally to cytotoxic T cells. The ubiquitin-26S proteasome system plays a central role in the generation of these class I MHC antigens. Ubiquitination is the mechanism of adding ubiquitin to lysine residues on substrate protein leading to the formation of a polyubiquitinated substrate. This process involves three classes of enzyme, an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase. Polyubiquitination through lysine-48 (K48) generally targets the substrate protein for proteasomal destruction. The protease responsible for the degradation of K48-polyubiquitinated proteins is the 26S proteasome. This proteasome is a two subunit protein complex composed of the 20S (catalytic core) and 19S (regulatory) proteasome complexes. The proteasome eliminates most of the foreign and non-functional proteins from the cell by degrading them into short peptides; only a small fraction of the peptides generated are of the correct length to be presented by the MHC class I system. It has been calculated that between 994 and 3122 protein molecules have to be degraded for the formation of a single, stable MHC class I complex at the cell surface, with an average effciency of 1 in 2000 (Kloetzel et al. 2004, Princiotta et al. 2003).

from REACTOME source record: REACT_75842
Type: pathway
Taxonomic scope
:
organism-specific biosystem
Organism
:
Homo sapiens
BSID:
366162

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...